【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知 =
.
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.
【答案】
(1)解:由正弦定理,則 =
,
所以 =
,
即(cosA﹣2cosC)sinB=(2sinC﹣sinA)cosB,化簡可得sin(A+B)=2sin(B+C).
因為A+B+C=π,所以sinC=2sinA.
因此 =2.
(2)解:由 =2,得c=2a,由余弦定理b2=a2+c2﹣2accosB,及cosB=
,b=2,
得4=a2+4a2﹣4a2× .解得a=1,從而c=2.
因為cosB= ,且sinB=
=
,
因此S= acsinB=
×1×2×
=
.
【解析】(1)由正弦定理,三角形內角和定理,兩角和的正弦函數公式化簡已知可得sinC=2sinA,即可得解 =2.(2)由正弦定理可求c=2a,由余弦定理解得a=1,從而c=2.利用同角三角函數基本關系式可求sinB的值,進而利用三角形面積公式即可計算得解.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分16分)已知函數在
處的切線方程為
(1)若=
,求證:曲線
上的任意一點處的切線與直線
和直線
圍成的三角形面積為定值;
(2)若,是否存在實數
,使得
對于定義域內的任意
都成立;
(3)在(2)的條件下,若方程有三個解,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的首項為1,前n項和Sn與an之間滿足an= (n≥2,n∈N*)
(1)求證:數列{ }是等差數列;
(2)求數列{an}的通項公式;
(3)設存在正整數k,使(1+S1)(1+S1)…(1+Sn)≥k 對于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com