【題目】已知數列為正項等比數列,
為
的前
項和,若
,
.
(1)求數列的通項公式;
(2)從三個條件:①;②
;③
中任選一個作為已知條件,求數列
的前
項和
.
注:如果選擇多個條件分別解答,按第一個解答計分.
科目:高中數學 來源: 題型:
【題目】圓周率π是數學中一個非常重要的數,歷史上許多中外數學家利用各種辦法對π進行了估算.現利用下列實驗我們也可對圓周率進行估算.假設某校共有學生N人,讓每人隨機寫出一對小于1的正實數a,b,再統計出a,b,1能構造銳角三角形的人數M,利用所學的有關知識,則可估計出π的值是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c,且asinB=bsin(A+).
(1)求A;
(2)若b,a,c成等差數列,△ABC的面積為2
,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐中,底面
為正方形,
為正三角形,
是
的中點,過
的平面
平行于平面
,且平面
與平面
的交線為
,與平面
的交線為
.
(1)在圖中作出四邊形(不必說出作法和理由);
(2)若,四棱錐
的體積為
,求點
到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
).其中常數
是自然對數的底數.
(1)若,求
在
上的極大值點;
(2)(i)證明在
上單調遞增;
(ii)求關于x的方程在
上的實數解的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】秦九韶是我國南宋時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法,如圖所示的程序框圖,給出了利用秦九韶算法求某多項式值的一個實例,若輸入x的值為2,則輸出的值為( )
A.80B.192C.448D.36
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,我國電子商務行業迎來了蓬勃發展的新機遇,但是電子商務行業由于缺乏監管,服務質量有待提高.某部門為了對本地的電商行業進行有效監管,調查了甲、乙兩家電商的某種同類產品連續十天的銷售額(單位:萬元),得到如下莖葉圖:
甲 | 乙 | |||||
7 | 5 | 10 | 7 | |||
9 | 5 | 3 | 11 | 5 | 7 | 8 |
8 | 6 | 12 | 3 | 5 | ||
4 | 2 | 13 | 2 | 6 | 9 | |
1 | 14 | 8 |
(1)根據莖葉圖判斷甲、乙兩家電商對這種產品的銷售誰更穩定些?
(2)為了綜合評估本地電商的銷售情況,從甲、乙兩家電商十天的銷售數據中各抽取兩天的銷售數據,其中銷售額不低于120萬元的天數分別記為,令
,求隨機變量Y的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐中,
,
是正三角形,且平面
平面ABC,
,E,G分別為AB,BC的中點.
(Ⅰ)證明:平面ABD;
(Ⅱ)若F是線段DE的中點,求AC與平面FGC所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com