【題目】橢圓中心為坐標原點O,對稱軸為坐標軸,且過M(2, ) ,N(
,1)兩點,
(I)求橢圓的方程;
(II)是否存在圓心在原點的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。
【答案】(1) (2)
,
【解析】試題分析:(Ⅰ)由橢圓的離心率及過點過M(2, ) ,N(
,1)列出方程組求出
,由此能求出橢圓
的方程.
(2)假設存在這樣的圓,設該圓的切線為與橢圓聯立,得
由此利用根的判別式、韋達定理、圓的性質,結合已知條件能求出
的取值范圍.
試題解析:(1)
(2)假設存在這樣的圓,設該圓的切線為y=kx+m,與聯立消y得(1+2k2)x2+4kmx+2m2﹣8=0
當△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0
因為,所以
所以3m2﹣8k2﹣8=0,由△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0 得
△=16k2m2﹣4(1+2k2)(2m2﹣8)=8(8k2﹣m2+4)>0
代入化簡得
又y=kx+m與圓心在原點的圓相切,所以所求圓
,直線AB斜率不存在時也滿足.
當 時,
,當
時,
,即
科目:高中數學 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數、經濟發展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經過一個月的統計,發現該流量包的定價:(單位:元/月)和購買人數
(單位:萬人)的關系如表:
(1)根據表中的數據,運用相關系數進行分析說明,是否可以用線性回歸模型擬合與
的關系?并指出是正相關還是負相關;
(2)①求出關于
的回歸方程;
②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內購買該流量包的人數能否超過20 萬人.
參考數據:,
,
.
參考公式:相關系數,回歸直線方程
,
其中,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“割圓術”是劉徽最突出的數學成就之一,他在《九章算術注》中提出割圓術,并作為計算圓的周長,面積已經圓周率的基礎,劉徽把圓內接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數值,這個結果是當時世界上圓周率計算的最精確數據.如圖,當分割到圓內接正六邊形時,某同學利用計算機隨機模擬法向圓內隨機投擲點,計算得出該點落在正六邊形內的頻率為0.8269,那么通過該實驗計算出來的圓周率近似值為(參考數據:)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在圓上任取一點
,過點
作
軸的垂線段
,
為垂足.當點
在圓上運動時,線段
的中點
形成軌跡
.
(1)求軌跡的方程;
(2)若直線與曲線
交于
兩點,
為曲線
上一動點,求
面積的最大值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠對一批產品進行了抽樣檢測.右圖是根據抽樣檢測后的產品凈重(單位:克)數據繪制的頻率分布直方圖,其中產品凈重的范圍是[96,106],樣本數據分組為[96,98),[98,100),[100,102),[102,104),[104,106],已知樣本中產品凈重小于100克的個數是36,則樣本中凈重大于或等于98克并且小于104克的產品的個數是( ).
A. 90B. 75C. 60D. 45
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的右焦點為
,右頂點為
.已知
,其中
為原點,
為橢圓的離心率.
(1)求橢圓的方程及離心率的值;
(2)設過點的直線
與橢圓交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
.若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com