精英家教網 > 高中數學 > 題目詳情

【題目】已知正方體ABCD﹣A1B1C1D1 , O是底ABCD對角線的交點.求證:
(1)C1O∥面AB1D1;
(2)平面A1AC⊥面AB1D1

【答案】
(1)證明:連結A1C1,設A1C1∩B1D1=O1,

連結AO1,因為ABCD﹣A1B1C1D1是正方體∴A1ACC1是平行四邊形

∴AC∥A1C1且 AC=A1C1

又O,O1分別是AC,A1C1的中點,∴O1C1∥AO且O1C1=AO,

∴O1C1AO是平行四邊形

∴OC1∥AO1,AO1面AB1D1,O1C面AB1D1

∴C1O∥面AB1D1


(2)證明:∵CC1⊥面A1B1C1D1,∴CC1⊥B1D1,

又∵A1C1⊥B1D1,∴B1D1⊥面A1C1C,

即A1C⊥B1D1,

同理可證A1C⊥AB1

又AB1∩B1D1=B1,

∴A1C⊥面AB1D1

∴平面A1AC⊥面AB1D1


【解析】(1)連結A1C1 , 設A1C1∩B1D1=O1 , 連結AO1 , 證明OC1∥AO1 , 然后證明C1O∥面AB1D1 . (2)證明A1C⊥B1D1 , A1C⊥AB1 , 推出A1C⊥面AB1D1 , 即可證明平面A1AC⊥面AB1D1
【考點精析】根據題目的已知條件,利用直線與平面平行的判定和平面與平面垂直的判定的相關知識可以得到問題的答案,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行;一個平面過另一個平面的垂線,則這兩個平面垂直.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)的定義域為R,且f(x)不為常值函數,有以下命題: ①函數g(x)=f(x)+f(﹣x)一定是偶函數;
②若對任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數;
③若f(x)是奇函數,且對于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對稱軸方程為x=2n+1(n∈Z);
④對于任意的x1 , x2∈R,且x1≠x2 , 若 >0恒成立,則f(x)為R上的增函數,
其中所有正確命題的序號是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)是R上以5為周期的可導偶函數,則曲線y=f(x)在x=5處的切線的斜率為(
A.-
B.0
C.
D.5

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數 ,且0<x1<x2<1,設 ,則a,b的大小關系是(
A.a>b
B.a<b
C.a=b
D.b的大小關系不能確定

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市AB兩所中學的學生組隊參加辯論賽,A中學推薦了3名男生、2名女生,B中學推薦了3名男生、4名女生,兩校所推薦的學生一起參加集訓.由于集訓后隊員水平相當,從參加集訓的男生中隨機抽取3人、女生中隨機抽取3人組成代表隊.

(1)A中學至少有1名學生入選代表隊的概率;

(2)某場比賽前,從代表隊的6名隊員中隨機抽取4人參賽,設X表示參賽的男生人數,求X的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】12分某校甲、乙兩個班級各有5名編號為1,2,3,4,5的學生進行投籃訓練,每人投10次,投中的次數統計如下表

學生

1號

2號

3號

4號

5號

甲班

6

5

7

9

8

乙班

4

8

9

7

7

(1)從統計數據看,甲、乙兩個班哪個班成績更穩定數字特征說明

(2)若把上表數據作為學生投籃命中率,規定兩個班級的1號和2號同學分別代表自己的班級參加比賽,每人投籃一次,將甲、乙兩個班兩名同學投中的次數之和分別記作,試求的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設復數z=(x﹣1)+yi(x∈R,y≥0),若|z|≤1,則y≥x的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,菱形ABCD的中心為O,四邊形ODEF為矩形,平面ODEF平面ABCD,DE=DA=DB=2

(I)若GDC的中點,求證:EG//平面BCF;

(II)若 ,求二面角 的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)=x3+ax2+bx+1的導函數f′(x)滿足f′(x)=2a,f′(2)=﹣b,
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)設g(x)=f′(x)ex , 求函數g(x)的單調區間.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视