【題目】設函數f(x)的定義域,值域分別為A,B,且A∩B是單元集,下列命題中:
①若A∩B={a},則f(a)=a;
②若B不是單元集,則滿足f[f(x)]=f(x)的x值可能不存在;
③若f(x)具有奇偶性,則f(x)可能為偶函數;
④若f(x)不是常數函數,則f(x)不可能為周期函數.
正確命題的序號為 .
【答案】②③
【解析】通過 對概念的理解,可以如下判斷這四個命題的真假.
①a∈A,即f(a)有定義;a∈B,即存在b∈A使得f(b)=a.這里并不要求f(a)=a;
比如,A={0,1},f(x)=x+1;①不對;
②構造一個一一對應的函數如:f(x)=x+1,A={0,1},B={1,2},
要f(f(x))有意義,只有x=0,f(f(0))=f(1)=2≠f(0);因此②成立
③說可能存在,具體找到一個就行,常數函數f(x)=1.③也成立
④要求A∩B是單元集,周期函數的定義域是無界的,但不一定要連續,構造一個周期函數去否定④,
如A=Z,若x是偶數,則,f(x)=0,若x為奇數,則f(x)= ,f(x)是周期為2的周期函數,B={0,
},A∩B={0};
所以答案是②③.
【考點精析】根據題目的已知條件,利用函數的奇偶性的相關知識可以得到問題的答案,需要掌握偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在軸上,離心率等于
,它的一個頂點恰好是拋物線
的焦點。
(1)求橢圓C的標準方程。
(2)已知點在橢圓C上,點A、B是橢圓C上不同于P、Q的兩個動點,且滿足:
。試問:直線AB的斜率是否為定值?請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣ x3+bx2+cx+bc.
(1)若函數f(x)在x=1處有極值﹣ ,試確定b、c的值;
(2)若b=1,f(x)存在單調遞增區間,求c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程是 (φ為參數),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程是ρ=2.正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標為
.
(1)求點A,B,C,D的直角坐標;
(2)設P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】海南省椰樹集團引進德國凈水設備的使用年限(年)和所需要的維修費用y(千元)的幾組統計數據如表:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)請根據上表提供的數據,用最小二乘法求出 關于x的線性回歸方程
;
(2)我們把中(1)的線性回歸方程記作模型一,觀察散點圖發現該組數據也可以用函數模型 =c1ln(c2x)擬合,記作模型二.經計算模型二的相關指數R2=0.64,
①請說明R2=0.64這一數據在線性回歸模型中的實際意義.
②計算模型一中的R2的值(精確到0.01),通過數據說明,兩種模型中哪種模型的擬合效果好.
參考公式和數值:用最小工乘法求線性回歸方程系數公式 =
,
.R2=1﹣
,
=0.651,(2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數f(x)=x2|x﹣a|(a∈R).21世紀教育網
(1)判定f(x)的奇偶性,并說明理由;
(2)當a≠0時,是否存在一點M(t,0),使f(x)的圖象關于點M對稱,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=kx2+(3+k)x+3,其中k為常數,且k≠0.
(1)若f(2)=3,求函數f(x)的表達式;
(2)在(1)的條件下,設函數g(x)=f(x)﹣mx,若g(x)在區間[﹣2,2]上是單調函數,求實數m的取值范圍;
(3)是否存在k使得函數f(x)在[﹣1,4]上的最大值是4?若存在,求出k的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合U={x∈N|0<x≤8},S={1,2,4,5},T={3,5,7},則S∩(CUT)=( 。
A.{1,2,4}
B.{1,2,3,4,5,7}
C.{1,2}
D.{1,2,4,5,6,8}
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com