【題目】某校初三(1)班、(2)班各有49名學生,兩班在一次數學測驗中的成績統計如下表:
(1)請你對下面的一段話給予簡要分析:
高一(1)班的小剛回家對媽媽說:“昨天的數學測驗,全班平均分為79分,得70分的人最多,我得了85分,在班里算上上游了!”
(2)請你根據表中的數據,對這兩個班的數學測驗情況進行簡要分析,并提出建議.
【答案】
(1)解:由于(1)班49名學生數學測驗成績的中位數是87,則85分排在全班第25名之后,所以從位次上看,不能說85分是上游,成績應該屬于中游.
但也不能以位次來判斷學習的好壞,小剛得了85分,說明他對這段的學習內容掌握得較好,從掌握學習的內容上講,也可以說屬于上游
(2)解:①班成績的中位數是87分,說明高于87分(含87)的人數占一半以上,而平均分為79分,標準差又很大,說明低分也多,兩極分化嚴重,建議加強對學習困難的學生的幫助.
②班的中位數和平均數都是79分,標準差又小,說明學生之間差別較小,學習很差的學生少,但學習優異的也很少,建議采取措施提高優秀率
【解析】(1)根據題意可以進行推測出答案。
(2)根據中位數、平均分、標準差的性質可以推測出答案。
【考點精析】本題主要考查了平均數、中位數、眾數和極差、方差與標準差的相關知識點,需要掌握⑴平均數、眾數和中位數都是描述一組數據集中趨勢的量;⑵平均數、眾數和中位數都有單位;⑶平均數反映一組數據的平均水平,與這組數據中的每個數都有關系,所以最為重要,應用最廣;⑷中位數不受個別偏大或偏小數據的影響;⑸眾數與各組數據出現的頻數有關,不受個別數據的影響,有時是我們最為關心的數據;標準差和方差越大,數據的離散程度越大;標準差和方程為0時,樣本各數據全相等,數據沒有離散性;方差與原始數據單位不同,解決實際問題時,多采用標準差才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sin2x﹣cos2x+1,下列結論中錯誤的是( )
A.f(x)的圖象關于( ,1)中心對稱
B.f(x)在( ,
)上單調遞減
C.f(x)的圖象關于x= 對稱
D.f(x)的最大值為3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線x2=4y焦點為F,點A,B,C為該拋物線上不同的三點,且滿足 +
+
=
.
(1)求|FA|+|FB|+|FC|;
(2)若直線AB交y軸于點D(0,b),求實數b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】當今信息時代,眾多高中生也配上了手機.某校為研究經常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數學周練成績,并制成下面的2×2列聯表:
及格 | 不及格 | 合計 | |
很少使用手機 | 20 | 6 | 26 |
經常使用手機 | 10 | 14 | 24 |
合計 | 30 | 20 | 50 |
(1)判斷是否有97.5%的把握認為經常使用手機對學習成績有影響?
(2)從這50人中,選取一名很少使用手機的同學記為甲和一名經常使用手機的同學記為乙,解一道數學題,甲、乙獨立解出此題的概率分別為P1 , P2 , 且P2=0.5,若|P1﹣P2|≥0.4,則此二人適合結為學習上互幫互助的“學習師徒”,記X為兩人中解出此題的人數,若X的數學期望E(X)=1.4,問兩人是否適合結為“學習師徒”? 參考公式及數據: ,其中n=a+b+c+d.
P(K2≥K0) | 0.10 | 0.05 | 0.025 | 0.010 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)=x3+a|x2﹣1|,a∈R,則對于不同的實數a,則函數f(x)的單調區間個數不可能是( )
A.1個
B.2個
C.3個
D.5個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機的發展,微信越來越成為人們交流的一種方式.某機構對使用微信交流的態度進行調查,隨機調查了 50 人,他們年齡的頻數分布及對使用微信交流贊成人數如表.
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(I)由以上統計數據填寫下面 2×2 列聯表,并判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態度有差異;
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若對年齡在[55,65),[65,75)的被調查人中隨機抽取兩人進行追蹤調查,記選中的4人中贊成使用微信交流的人數為X,求隨機變量X的分布列和數學期望
參考公式:K2= ,其中n=a+b+c+d
參考數據:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=AB,M,N分別為PB,AC的中點,
(1)求證:MN∥平面PAD;
(2)求點B到平面AMN的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,已知點A的極坐標為( ,
),直線l的極坐標方程為ρcos(θ﹣
)=a,且點A在直線l上,
(1)求a的值及直線l的直角坐標方程;
(2)圓C的參數方程為 (α為參數),試判斷直線l與圓C的位置關系.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com