【題目】已知直線l:x﹣y=1與圓M:x2+y2﹣2x+2y﹣1=0相交于A,C兩點,點B,D分別在圓M上運動,且位于直線AC兩側,則四邊形ABCD面積的最大值為 .
【答案】
【解析】解:把圓M:x2+y2﹣2x+2y﹣1=0化為標準方程:(x﹣1)2+(y+1)2=3,圓心(1,﹣1),半徑r= .
直線與圓相交,由點到直線的距離公式的弦心距d= =
,
由勾股定理的半弦長= =
,所以弦長|AB|=2×
=
.
又B,D兩點在圓上,并且位于直線AC的兩側,
四邊形ABCD的面積可以看成是兩個三角形△ABC和△ACD的面積之和,
如圖所示,
當B,D為如圖所示位置,即BD為弦AC的垂直平分線時(即為直徑時),
兩三角形的面積之和最大,即四邊形ABCD的面積最大,
最大面積為:S= ×|AB|×|CE|+
×|AB|×|DE|
= =
.
所以答案是: .
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 (t為參數),曲線C的參數方程為
(θ為參數)
(1)以原點O為極點,以x軸正半軸為極軸(與直角坐標系xOy取相同的長度單位)建立極坐標系,若點P的極坐標為(4, ),判斷點P與直線l的位置關系;
(2)設點Q是曲線C上的一個動點,利用曲線C的參數方程求Q到直線l的距離的最大值與最小值的差.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=6cos2 +
sinωx﹣3(ω>2)在一個周期內的圖象如圖所示,A為圖象的最高點,B,C為圖象與x軸的交點,且ABC為正三角形.
(1)求ω的值;
(2)求函數f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=log2( +a).
(1)當a=5時,解不等式f(x)>0;
(2)若關于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個元素,求a的取值范圍.
(3)設a>0,若對任意t∈[ ,1],函數f(x)在區間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0),離心率為
,左準線方程是x=﹣2,設O為原點,點A在橢圓C上,點B在直線y=2上,且OA⊥OB.
(1)求橢圓C的方程;
(2)求△AOB面積取得最小值時,線段AB的長度.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設數列{an}為等差數列,數列{bn}為等比數列.若a1<a2 , b1<b2 , 且bi=ai2(i=1,2,3),則數列{bn}的公比為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的極坐標方程為ρ2cos2θ=18,曲線C2的極坐標方程為θ= ,曲線C1 , C2相交于A,B兩點.
(1)求A,B兩點的極坐標;
(2)曲線C1與直線 (t為參數)分別相交于M,N兩點,求線段MN的長度.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com