【題目】“珠算之父”程大為是我國明代偉大數學家,他的應用數學巨著《算法統綜》的問世,標志著我國的算法由籌算到珠算轉變的完成,程大位在《算法統綜》中常以詩歌的形式呈現數學問題,其中有一首“竹筒容米”問題:“家有九節竹一莖,為因盛米不均平,下頭三節三升九,上稍四節儲三升,唯有中間兩節竹,要將米數次第盛,若有先生能算法,也教算得到天明”(【注】三升九:3.9升,次第盛;盛米容積依次相差同一數量.)用你所學的數學知識求得中間兩節的容積為( )
A. 升 B.
升 C.
升 D.
升
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如表的列聯表:
算得,K2≈7.8.見附表:參照附表,得到的正確結論是( )
男 | 女 | 總計 | |||||
愛好 | 40 | 20 | 60 | ||||
不愛好 | 20 | 30 | 50 | ||||
總計 | 60 | 50 | 110 | ||||
P(K2≥k) | 0.050 | 0.010 | 0.001 | ||||
k | 3.841 | 6.635 | 10.828 | ||||
A. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B. 在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
C. 有99%以上的把握認為“愛好該項運動與性別有關”
D. 有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點為
,右頂點為
,上頂點為
,過
、
、
三點的圓
的圓心坐標為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線(
為常數,
)與橢圓
交于不同的兩點
和
.
(。┊斨本過
,且
時,求直線
的方程;
(ⅱ)當坐標原點到直線
的距離為
,且
面積為
時,求直線
的傾斜角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在高中學習過程中,同學們經常這樣說:“如果物理成績好,那么學習數學就沒什么問題.”某班針對“高中生物理學習對數學學習的影響”進行研究,得到了學生的物理成績與數學成績具有線性相關關系的結論.現從該班隨機抽取5名學生在一次考試中的物理和數學成績,如下表:
編號 成績 | 1 | 2 | 3 | 4 | 5 |
物理( | 90 | 85 | 74 | 68 | 63 |
數學( | 130 | 125 | 110 | 95 | 90 |
(1)求數學成績關于物理成績
的線性回歸方程
(
精確到
),若某位學生的物理成績為80分,預測他的數學成績;
(2)要從抽取的五位學生中隨機選出三位參加一項知識競賽,以表示選中的學生的數學成績高于100分的人數,求隨機變量
的分布列及數學期望.
(參數公式: ,
.)
參考數據: ,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的方程為
,雙曲線
的一條漸近線與
軸所成的夾角為
,且雙曲線的焦距為
.
(1)求橢圓的方程;
(2)設分別為橢圓
的左,右焦點,過
作直線
(與
軸不重合)交橢圓于
,
兩點,線段
的中點為
,記直線
的斜率為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】觀察圖中各正方形圖案,每條邊上有an個圓點,第an個圖案中圓點的個數是an,按此規律推斷出所有圓點總和Sn與n的關系式為( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
平面
.
(1)求證: 平面
;
(2)若為線段
的中點,且過
三點的平面與線段
交于點
,確定點
的位置,說明理由;并求三棱錐
的高.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產的某種產品被檢測出其中一項質量指標存在問題.該企業為了檢查生產該產品的甲,乙兩條流水線的生產情況,隨機地從這兩條流水線上生產的大量產品中各抽取50件產品作為樣本,測出它們的這一項質量指標值.若該項質量指標值落在內,則為合格品,否則為不合格品.表1是甲流水線樣本的頻數分布表,圖1是乙流水線樣本的頻率分布直方圖.
(1)根據圖,1估計乙流水線生產產品該質量指標值的中位數;
(2)若將頻率視為概率,某個月內甲,乙兩條流水線均生產了5000件產品,則甲,乙兩條流水線分別生產出不合格品約多少件?
(3)根據已知條件完成下面列聯表,并回答是否有85%的把握認為“該企業生產的這種產品的質量指標值與甲,乙兩條流水線的選擇有關”?
附: (其中
為樣本容量)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com