【題目】某商場舉行抽獎活動,從裝有編號0,1,2,3四個球的抽獎箱中,每次取出后放回,連續取兩次,取出的兩個小球號碼相加之和等于6中特等獎,等于5中一等獎,等于4中二等獎,等于3中三等獎.
(1)求中二等獎的概率;
(2)求未中獎的概率.
【答案】(1);(2)
.
【解析】
(1)先得到從裝有編號0,1,2,3四個球的抽獎箱中,每次取出后放回,連續取兩次的基本事件的總數,再得到兩個小球號碼相加之和為4即中二等獎的基本事件數,代入古典概型的概率公式求解.
(2)先得到中獎的基本事件數,進而得到未中獎的基本事件數,代入公式求解.
(1)從裝有編號0,1,2,3四個球的抽獎箱中,每次取出后放回,連續取兩次的基本事件有種,
兩個小球號碼相加之和為4即中二等獎的基本事件有,共3種,
所以中二等獎的概率為.
(2)兩個小球號碼相加之和等于6的基本事件有,共1種,
兩個小球號碼相加之和等于5的基本事件有,共2種,
兩個小球號碼相加之和等于3的基本事件有,共4種,
所以未中獎的概率
科目:高中數學 來源: 題型:
【題目】如圖,在三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點.
(1)求證:BD∥平面FGH;
(2)若CF⊥平面ABC,AB⊥BC,CF=DE,∠BAC=45° ,求平面FGH與平面ACFD所成的角(銳角)的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在①,
,②
,
,③
,
三個條件中任選一個補充在下面問題中,并加以解答.
已知的內角A,B,C的對邊分別為a,b,c,若
,______,求
的面積S.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,
)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,
,
,
,函數
,
的最小正周期為
.
(1)求的單調增區間;
(2)方程;在
上有且只有一個解,求實數n的取值范圍;
(3)是否存在實數m滿足對任意x1∈[-1,1],都存在x2∈R,使得+
+m(
-
)+1>f(x2)成立.若存在,求m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 :
(
)的離心率
,直線
被以橢圓
的短軸為直徑的圓截得的弦長為
.
(1)求橢圓 的方程;
(2)過點 的直線
交橢圓于
,
兩個不同的點,且
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com