【題目】觀察下列等式:13+23=32 , 13+23+33=62 , 13+23+33+43=102 , …,根據上述規律,得到一般結論是 .
科目:高中數學 來源: 題型:
【題目】某企業生產甲、乙兩種產品,已知生產每噸甲產品要用A原料3噸,B原料2噸,生產每噸乙產品要用A原料1噸,B原料3噸。銷售每噸甲產品可獲得利潤5萬元,每噸乙產品可獲得利潤3萬元,該企業在一個生產周期內消耗A原料不超過13噸,B原料不超過18噸,那么該企業可獲得最大利潤是___________萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=ka﹣x(k,a為常數,a>0且a≠1)的圖象過點A(0,1),B(3,8).
(1)求函數f(x)的解析式;
(2)若函數g(x)= 是奇函數,求b的值;
(3)在(2)的條件下判斷函數g(x)的單調性,并用定義證明你的結論;
(4)解不等式g(3x)+g(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 和點P(4,2),直線l經過點P且與橢圓交于A,B兩點.
(1)當直線l的斜率為 時,求線段AB的長度;
(2)當P點恰好為線段AB的中點時,求l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設 =
,
=(4sinx,cosx﹣sinx),f(x)=
.
(1)求函數f(x)的解析式;
(2)已知常數ω>0,若y=f(ωx)在區間 是增函數,求ω的取值范圍;
(3)設集合A= ,B={x||f(x)﹣m|<2},若AB,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中,
是
的中點,
,其周長為
,若點
在線段
上,且
.
(1)建立合適的平面直角坐標系,求點的軌跡
的方程;
(2)若是射線
上不同兩點,
,過點
的直線與
交于
,直線
與
交于另一點
.證明:
是等腰三角形.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com