精英家教網 > 高中數學 > 題目詳情

【題目】關于圓周率,數學發展史上出現過許多很有創意的求法,如著名的蒲豐試驗.受其啟發,我們也可以通過設計下面的試驗來估計的值,試驗步驟如下:①先請高二年級 500名同學每人在小卡片上隨機寫下一個實數對;②若卡片上的能與1構成銳角三角形,則將此卡片上交;③統計上交的卡片數,記為;④根據統計數估計的值.假如本次試驗的統計結果是,那么可以估計的值約為( )

A. B. C. D.

【答案】A

【解析】分析:500對都小于l的正實數對(x,y)滿足,面積為1,兩個數能與1構成銳角三角形三邊的數對(x,y),滿足x2+y21且,x+y>1,面積為1﹣,由此能估計π的值.

詳解:由題意,500對都小于l的正實數對(x,y)滿足,面積為1,

兩個數能與1構成銳角三角形三邊的數對(x,y),滿足,

x2+y2>1,,

面積為1﹣,

因為統計兩數能與l 構成銳角三角形三邊的數對(x,y) 的個數m=113,

所以=1﹣,所以π=

故答案為:A

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為0),過點的直線的參數方程為t為參數),直線與曲線C相交于A,B兩點.

)寫出曲線C的直角坐標方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數圖象相鄰兩條對稱軸之間的距離為,將函數的圖象向左平移個單位,得到的圖象關于軸對稱,則( )

A. 函數的周期為 B. 函數圖象關于點對稱

C. 函數圖象關于直線對稱 D. 函數上單調

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若在函數的定義域內存在區間,使得函數在區間上為減函數,求實數的取值范圍;

(2)當時,若曲線 在點處的切線與曲線有且只有一個公共點,求的值或取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示的莖葉圖記錄了華潤萬家在渭南城區甲、乙連鎖店四天內銷售情況的某項指標統計:

I)求甲、乙連鎖店這項指標的方差,并比較甲、乙該項指標的穩定性;

(Ⅱ)每次都從甲、乙兩店統計數據中隨機各選一個進行比對分析,共選了3次(有放回選。O選取的兩個數據中甲的數據大于乙的數據的次數為,求的分布列及數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某小組為了研究晝夜溫差對一種稻谷種子發芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實驗室每天每100顆種子的發芽數,得到如下資料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

溫差

9

10

11

8

12

發芽數(顆)

38

30

24

41

17

利用散點圖,可知線性相關。

(1)求出關于的線性回歸方程,若4月6日星夜溫差,請根據你求得的線性同歸方程預測4月6日這一天實驗室每100顆種子中發芽顆數;

(2)若從4月1日 4月5日的五組實驗數據中選取2組數據,求這兩組恰好是不相鄰兩天數據的概率.

(公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的右焦點為,過作互相垂直的兩條直線分別與相交于,,四點.

(1)四邊形能否成為平行四邊形,請說明理由;

(2)求的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某心理學研究小組在對學生上課注意力集中情況的調查研究中,發現其注意力指數p與聽課時間t之間的關系滿足如圖所示的曲線.當t(0,14]時,曲線是二次函數圖象的一部分,當t[14,40]時,曲線是函數)圖象的一部分.根據專家研究,當注意力指數p大于等于80時聽課效果最佳.

(1)試求的函數關系式;

(2)一道數學難題,講解需要22分鐘,問老師能否經過合理安排在學生聽課效果最佳時講完?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將圓上每一點的橫坐標保持不變,縱坐標變為原來的倍,得曲線.

寫出的參數方程;

設直線的交點為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,求過線段的中點且與垂直的直線的極坐標方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视