【題目】已知Sn是正項數列{an}的前n項和,且Sn= an2+
an﹣
(1)求數列{an}的通項公式;
(2)若an=2nbn , 求數列{bn}的前n項和.
【答案】
(1)解:∵Sn=
+
an﹣
,
∴Sn﹣1=
+
an﹣1﹣
,
∴an=Sn﹣Sn﹣1= (
﹣
)+
(an﹣an﹣1)(n≥2),
∵正項數列{an},
∴an﹣an﹣1=2,易得a1=3,
∴an=2n+1
(2)解:∵an=2nbn
∴bn= =
∴Tn= +
+…+
Tn=
+
+…+
+
上面兩式相減得,
Tn=
+
+
+…+
﹣
= +2
﹣
,
∴Tn=5﹣(2n+5)
【解析】(1)運用an= 即可求出an;(2)運用數列的求和方法:錯位相減法,即可求出數列{bn}的前n項和.
【考點精析】認真審題,首先需要了解數列的前n項和(數列{an}的前n項和sn與通項an的關系).
科目:高中數學 來源: 題型:
【題目】新生兒Apgar評分,即阿氏評分是對新生兒出生后總體狀況的一個評估,主要從呼吸、心率、反射、膚色、肌張力這幾個方面評分,滿10分者為正常新生兒,評分7分以下的新生兒考慮患有輕度窒息,評分在4分以下考慮患有重度窒息,大部分新生兒的評分多在7-10分之間,某市級醫院婦產科對1月份出生的新生兒隨機抽取了16名,以下表格記錄了他們的評分情況.
(1)現從16名新生兒中隨機抽取3名,求至多有1名評分不低于9分的概率;
(2)以這16名新生兒數據來估計本年度的總體數據,若從本市本年度新生兒任選3名,記表示抽到評分不低于9分的新生兒數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列{an}是等差數列,首項a1>0,a2003+a2004>0,a2003 . a2004<0,則使前n項和Sn>0成立的最大自然數n是( )
A.4005
B.4006
C.4007
D.4008
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩人想參加《中國詩詞大會》比賽,籌辦方要從10首詩司中分別抽出3首讓甲、乙背誦,規定至少背出其中2首才算合格; 在這10首詩詞中,甲只能背出其中的7首,乙只能背出其中的8首
(1)求抽到甲能背誦的詩詞的數量的分布列及數學期望;
(2)求甲、乙兩人中至少且有一人能合格的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】 用總長14.8米的鋼條制作一個長方體容器的框架,如果所制容器底面一邊的長比另一邊的長多0.5米,那么高為多少時容器的容積最大?最大容積是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設{an}是等差數列,{bn}是各項都為正數的等比數列,且a1=b1=1,a3+b5=21,a5+b3=13.
(1)求{an}、{bn}的通項公式;
(2)求數列 的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究型學習小組調查研究”中學生使用智能手機對學習的影響”.部分統計數據如下表:
參考數據:
參考公式: ,其中
(Ⅰ)試根據以上數據,運用獨立性檢驗思想,指出有多大把握認為中學生使用智能手機對學習有影響?
(Ⅱ)研究小組將該樣本中使用智能手機且成績優秀的4位同學記為組,不使用智能手機且成績優秀的8位同學記為
組,計劃從
組推選的2人和
組推選的3人中,隨機挑選兩人在學校升旗儀式上作“國旗下講話”分享學習經驗.求挑選的兩人恰好分別來自
、
兩組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩家商場對同一種商品開展促銷活動,對購買該商品的顧客兩家商場的獎勵方案如下:
甲商場:顧客轉動如圖所示圓盤,當指針指向陰影部分(圖中兩個陰影部分均為扇形,且每個扇形圓心角均為,邊界忽略不計)即為中獎·
乙商場:從裝有2個白球、2個藍球和2個紅球的盒子中一次性摸出1球(這些球除顏色外完全相同),它是紅球的概率是,若從盒子中一次性摸出2球,且摸到的是2個相同顏色的球,即為中獎.
(Ⅰ)求實數的值;
(Ⅱ)試問:購買該商品的顧客在哪家商場中獎的可能性大?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com