【題目】如圖,三棱柱中,側面
側面
,
,
,
,
為棱
的中點,
在棱
上,
面
.
(1)求證:為
的中點;
(2)求二面角的余弦值.
科目:高中數學 來源: 題型:
【題目】已知橢圓:
的左、右焦點分別為
,
,過
且垂直于
軸的焦點弦的弦長為
,過
的直線
交橢圓
于
,
兩點,且
的周長為
.
(1)求橢圓的方程;
(2)已知直線,
互相垂直,直線
過
且與橢圓
交于點
,
兩點,直線
過
且與橢圓
交于
,
兩點.求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c.滿足2acosC+bcosC+ccosB=0.
(Ⅰ)求角C的大小;
(Ⅱ)若a=2,△ABC的面積為,求C的大小。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
,
.
(Ⅰ)若,求
的極值;
(Ⅱ)若函數的兩個零點為
,記
,證明:
.
【答案】(Ⅰ)極大值為,無極小值;(Ⅱ)證明見解析.
【解析】分析:(Ⅰ)先判斷函數在
上的單調性,然后可得當
時,
有極大值,無極小值.(Ⅱ)不妨設
,由題意可得
,即
,又由條件得
,構造
,令
,則
,利用導數可得
,故得
,又
,所以
.
詳解:(Ⅰ),
,
由得
,
且當時,
,即
在
上單調遞增,
當時,
,即
在
上單調遞減,
∴當時,
有極大值,且
,無極小值.
(Ⅱ)函數
的兩個零點為
,不妨設
,
,
.
,
即,
又,
,
,
.
令,則
,
在
上單調遞減,
故,
,
即,
又,
.
點睛:(1)研究方程根的情況,可以通過導數研究函數的單調性、最大(小)值、函數的變化趨勢等,根據題目要求,畫出函數圖象的大體圖象,然后通過數形結合的思想去分析問題,可以使得問題的求解有一個清晰、直觀的整體展現.
(2)證明不等式時常采取構造函數的方法,然后通過判斷函數的單調性,借助函數的最值進行證明.
【題型】解答題
【結束】
22
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數,
).以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,已知曲線
的極坐標方程為:
.
(Ⅰ)求直線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設直線與曲線
交于不同的兩點
,若
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】宋元時期杰出的數學家朱世杰在其數學巨著《四元玉鑒》卷中“菱草形段”第一個問題“今有菱草六百八十束,欲令‘落一形’捶(同垛)之,問底子(每層三角形邊菱草束數,等價于層數)幾何?”中探討了“垛積術”中的落一形垛(“落一形”即是指頂上束,下一層
束,再下一層
束,……,成三角錐的堆垛,故也稱三角垛,如圖,表示第二層開始的每層菱草束數),則本問題中三角垛底層菱草總束數為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
,(其中
,
為自然對數的底數,
……).
(1)令,若
對任意的
恒成立,求實數
的值;
(2)在(1)的條件下,設為整數,且對于任意正整數
,
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】算籌是在珠算發明以前我國獨創并且有效的計算工具,為我國古代數學的發展做出了很大貢獻.在算籌計數法中,以“縱式”和“橫式”兩種方式來表示數字,如圖:
表示多位數時,個位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當的方式全部放入 下面的表格中,那么可以表示的三位數的個數為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校在學年期末舉行“我最喜歡的文化課”評選活動,投票規則是一人一票,高一(1)班44名學生和高一(7)班45名學生的投票結果如下表(無廢票):
語文 | 數學 | 外語 | 物理 | 化學 | 生物 | 政治 | 歷史 | 地理 | |
高一(1)班 | 6 | 9 | 7 | 5 | 4 | 5 | 3 | 3 | 2 |
高一(7)班 | 6 | 4 | 5 | 6 | 5 | 2 | 3 |
該校把上表的數據作為樣本,把兩個班同一學科的得票之和定義為該年級該學科的“好感指數”.
(Ⅰ)如果數學學科的“好感指數”比高一年級其他文化課都高,求的所有取值;
(Ⅱ)從高一(1)班投票給政治、歷史、地理的學生中任意選取位同學,設隨機變量
為投票給地理學科的人數,求
的分布列和期望;
(Ⅲ)當為何值時,高一年級的語文、數學、外語三科的“好感指數”的方差最小?(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,直線l1的參數方程為(t為參數),直線l2的參數方程為
.設l1與l2的交點為P,當k變化時,P的軌跡為曲線C.
(1)寫出C的普通方程;
(2)以坐標原點為極點,x軸正半軸為極軸建立極坐標系,設l3:ρ(cosθ+sinθ) =0,M為l3與C的交點,求M的極徑.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com