【題目】已知函數滿足
,
,
.
(1)求函數的解析式;
(2)求函數的單調區間;
(3)當且
時,求證:
.
【答案】(1);(2)當
時,函數
的單調遞增區間為
,
當時,函數
的單調遞增區間為
,單調遞減區間為
;(3)詳見解析.
【解析】
(1)由已知中,可得
,進而可得
,
,進而得到函數
的解析式;
(2)由(1)得:,即
,
,對a進行分類討論,可得不同情況下函數
的單調區間;
(3)令,
,然后利用導數研究各自單調性,結合單調性分類去掉
和
的絕對值,再構造差函數,利用導數證明大小.
(1)∵,
∴,
∴,
即,
又∵,
所以,
所以;
(2)∵,
∴,
∴,
①當時,
恒成立,函數
在R上單調遞增;
②當時,由
得
,
當時,
,
單調遞減,
當時,
,
單調遞增,
綜上,當時,函數
的單調遞增區間為
,
當時,函數
的單調遞增區間為
,單調遞減區間為
;
(3)令,
,當
且
時,
由得
在
上單調遞減,
所以當時,
,當
時,
,
而,
,
所以在
上單調遞增,
,
則在
上單調遞增,
,
①當時,
,
,所以
在
上單調遞減,
,
,
②當時,
,
,
,
所以,所以
遞減,
,
,
綜上, .
科目:高中數學 來源: 題型:
【題目】已知平面上一動點A的坐標為.
(1)求點A的軌跡E的方程;
(2)點B在軌跡E上,且縱坐標為.
(i)證明直線AB過定點,并求出定點坐標;
(ii)分別以A,B為圓心作與直線相切的圓,兩圓公共弦的中點為H,在平面內是否存在定點P,使得
為定值?若存在,求出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】骰子,古代中國民間娛樂用來投擲的博具,早在戰國時期就有.最常見的骰子是正六面體,也有正十四面體、球形十八面體等形制的骰子,如圖是滿城漢墓出土的銅煢,它是一個球形十八面體骰子,有十六面刻著一至十六數字,另兩面刻“驕”和“酒來”,其中“驕”表示最大數十七,“酒來”表示最小數零,每投一次,出現任何一個數字都是等可能的.現投擲銅煢三次觀察向上的點數,則這三個數能構成公比不為1的等比數列的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標準果,優質果,精品果,禮品果.某采購商從采購的一批水果中隨機抽取100個,利用水果的等級分類標準得到的數據如下:
等級 | 標準果 | 優質果 | 精品果 | 禮品果 |
個數 | 10 | 30 | 40 | 20 |
(1)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考:
方案1:不分類賣出,單價為20元/.
方案2:分類賣出,分類后的水果售價如下表:
等級 | 標準果 | 優質果 | 精品果 | 禮品果 |
售價(元/ | 16 | 18 | 22 | 24 |
從采購商的角度考慮,應該采用哪種方案較好?并說明理由.
(2)從這100個水果中用分層抽樣的方法抽取10個,再從抽取的10個水果中隨機抽取3個,表示抽取到精品果的數量,求
的分布列及數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一圓錐底面圓的直徑為3,圓錐的高為,在該圓錐內放置一個棱長為a的正四面體,并且正四面體在該幾何體內可以任意轉動,則a的最大值為( )
A.3B.C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,已知菱形的對角線
交于點
,點
為線段
的中點,
,
,將三角形
沿線段
折起到
的位置,
,如圖2所示.
(Ⅰ)證明:平面
平面
;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,左焦點
、右焦點
都在
軸上,點
是橢圓
上的動點,
的面積的最大值為
,在
軸上方使
成立的點
只有一個.
(1)求橢圓的方程;
(2)過點的兩直線
,
分別與橢圓
交于點
,
和點
,
,且
,比較
與
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《周髀算經》是我國古老的天文學和數學著作,其書中記載:一年有二十四個節氣,每個節氣晷長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測影子的長度),夏至、小暑、大暑、立秋、處暑、白露、秋分、寒露、霜降是連續的九個節氣,其晷長依次成等差數列,經記錄測算,這九個節氣的所有晷長之和為49.5尺,夏至、大暑、處暑三個節氣晷長之和為10.5尺,則立秋的晷長為( )
A.1.5尺B.2.5尺C.3.5尺D.4.5尺
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com