精英家教網 > 高中數學 > 題目詳情

【題目】一酒企為擴大生產規模,決定新建一個底面為長方形的室內發酵館,發酵館內有一個無蓋長方體發酵池,其底面為長方形(如圖所示),其中.結合現有的生產規模,設定修建的發酵池容積為450,深2.若池底和池壁每平方米的造價分別為200元和150元,發酵池造價總費用不超過65400

1)求發酵池邊長的范圍;

2)在建發酵館時,發酵池的四周要分別留出兩條寬為4米和米的走道(為常數).:發酵池的邊長如何設計,可使得發酵館占地面積最小.

【答案】12)當時,,米時,發酵館的占地面積最;當時,時,發酵館的占地面積最;當時,米時,發酵館的占地面積最小.

【解析】

1)設米,總費用為,解即可得解;

2)結合(1)可得占地面積結合導函數分類討論即可求得最值.

1)由題意知:矩形面積

米,則米,由題意知:,得

設總費用為,

,

解得:,又,故,

所以發酵池邊長的范圍是不小于15米,且不超過25米;

2)設發酵館的占地面積為由(1)知:,

時,,上遞增,則,即米時,發酵館的占地面積最;

時,,上遞減,則,即米時,發酵館的占地面積最小;

時,時,,遞減;時,遞增,

因此,即時,發酵館的占地面積最;

綜上所述:當時,,米時,發酵館的占地面積最。划時,時,發酵館的占地面積最小;當時,米時,發酵館的占地面積最小.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知平面,四邊形為矩形,四邊形為直角梯形,ABCD,,

(1)求證:平面

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】是兩個平面,mn是兩條直線,有下列四個命題;

①如果,,,那么.

②如果,,那么.

③如果,,那么.

④如果,,那么m所成的角和n所成的角相等.

其中正確的命題的個數為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數學著作《孫子算經》卷下第二十六題,叫做“物不知數”,原文如下:今有物不知其數,三三數之剩二,五五數之剩三,七七數之剩二.問物幾何?現有這樣一個相關的問題:將120202020個自然數中被5除余3且被7除余2的數按照從小到大的順序排成一列,構成一個數列,則該數列各項之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某生態園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A的長度均大于200米,現在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.

1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?

2)已知AP段圍墻高1米,AQ段圍墻高1.5米,造價均為每平方米100.若圍圍墻用了20000元,問如何圍可使竹籬笆用料最。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為,(θ為參數),以原點為極點,x軸非負半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)在平面直角坐標系xOy中,A(﹣2,0),B0,﹣2),M是曲線C上任意一點,求ABM面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知動圓與圓 相切,且與圓 相內切,記圓心的軌跡為曲線.設為曲線上的一個不在軸上的動點, 為坐標原點,過點的平行線交曲線, 兩個不同的點.

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個常數?若能,求出這個常數,若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“綠水青山就是金山銀山”的理念越來越深入人心,據此,某網站調查了人們對生態文明建設的關注情況,調查數據表明,參與調查的人員中關注生態文明建設的約占80%.現從參與調查的關注生態文明建設的人員中隨機選出200人,并將這200人按年齡(單位:歲)分組:第1[15,25),第2[25,35),第3[35,45),第4[4555),第5[55,65],得到的頻率分布直方圖如圖所示.

(Ⅰ)求這200人的平均年齡(每一組用該組區間的中點值作為代表)和年齡的中位數(保留一位小數);

(Ⅱ)現在要從年齡在第1,2組的人員中用分層抽樣的方法抽取5人,再從這5人中隨機抽取3人進行問卷調查,求抽取的3人中恰有2人的年齡在第2組中的概率;

(Ⅲ)若從所有參與調查的人(人數很多)中任意選出3人,設這3人中關注生態文明建設的人數為X,求隨機變量X的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在我們的教材必修一中有這樣一個問題,假設你有一筆資金,現有三種投資方案供你選擇,這三種方案的回報如下:

方案一:每天回報元;

方案二:第一天回報元,以后每天比前一天多回報元;

方案三:第一天回報元,以后每天的回報比前一天翻一番.

記三種方案第天的回報分別為,,.

1)根據數列的定義判斷數列,的類型,并據此寫出三個數列的通項公式;

2)小王準備做一個為期十天的短期投資,他應該選擇哪一種投資方案?并說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视