精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=2x3+3ax2+3bx+8在x=1及x=2處取得極值.
(1)求a、b的值;
(2)求f(x)的單調區間.

【答案】
(1)解:∵函數f(x)=2x3+3ax2+3bx+8,

∴f′(x)=6x2+6ax+3b,

∵f(x)在x=1及x=2處取得極值,

,

解得a=﹣3,b=4


(2)解:∵a=﹣3,b=4,

∴f′(x)=6x2﹣18x+12,

由f′(x)=6x2﹣18x+12>0,得x>2,或x<1;

由f′(x)=6x2﹣18x+12<0,得1<x<2.

∴f(x)的單調增區間為(﹣∞,1),(2,+∞),f(x)的單調減區間為(1,2)


【解析】(1)由函數f(x)=2x3+3ax2+3bx+8,知f′(x)=6x2+6ax+3b,再由f(x)在x=1及x=2處取得極值,能求出a、b的值.(2)由(1)知f′(x)=6x2﹣18x+12,由f′(x)=6x2﹣18x+12>0,得x>2,或x<1;由f′(x)=6x2﹣18x+12<0,得1<x<2.由此能求出f(x)的單調區間.
【考點精析】關于本題考查的利用導數研究函數的單調性和函數的極值,需要了解一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減;極值反映的是函數在某一點附近的大小情況才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知正項等差數列{an}的前n項和為Sn , 且滿足
(1)求數列{an}的通項公式;
(2)求數列 的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= x3﹣ax2+(a2﹣1)x+b(a,b∈R),其圖象在點(1,f(1))處的切線方程為x+y﹣3=0.
(1)求a,b的值;
(2)求函數f(x)的單調區間,并求出f(x)在區間[﹣2,4]上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若任意x∈R使不等式 成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐 中,平面PAD⊥ABCD,AB=AD,∠BAD=60°,E,F分別是AP,AD的中點.

求證:
(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋物線y2=﹣12x的準線與雙曲線 =1的兩條漸近線所圍成的三角形的面積等于

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線方程為16x2﹣9y2=144.
(1)求該雙曲線的實軸長、虛軸長、離心率;
(2)若拋物線C的頂點是該雙曲線的中心,而焦點是其左頂點,求拋物線C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在三棱柱ABC-A1B1C1中,側棱AA1⊥底面ABC,AB=AC=1,AA1=2,∠B1A1C1=90°,D為BB1的中點.

求證:AD⊥平面A1DC1.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設集合A= ,B= ,從A到B的對應關系f不是映射的是( )
A.f:x→y=
B.f:x→y=
C.f:x→y=
D.f:x→y=

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视