【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數),將曲線
上所有點的橫坐標縮短為原來的
,縱坐標縮短為原來的
,得到曲線
,在以坐標原點
為極點,
軸的正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的極坐標方程及直線
的直角坐標方程;
(2)設點為曲線
上的任意一點,求點
到直線
的距離的最大值.
【答案】(1)曲線的極坐標方程為
,直線
的直角坐標方程
;(2)
.
【解析】
(1)由圖象變換得到曲線的參數方程為
(
為參數),消去參數可得直角坐標方程
,再化為極坐標方程即可.由直線的極坐標方程并結合互化公式可得直線的直角坐標方程.(2)設
,根據點到直線的距離公式和三角函數的有關知識可得最大值.
(1)曲線的參數方程為
(
為參數),
根據圖象變換可得曲線的參數方程為
(
為參數),
消去方程中的可得普通方程為
,
將代入上式得
.
所以曲線的極坐標方程
.
直線的極坐標方程為
,即
,
將代入上式,得
,
所以直線的直角坐標方程為
.
(2)設 為曲線
上的任意一點,
則點到直線
的距離
,
∴當時,
有最大值
,
∴點到直線
的距離的最大值為
.
科目:高中數學 來源: 題型:
【題目】某區選派7名隊員代表本區參加全市青少年圍棋錦標賽,其中3名來自A學校且1名為女棋手,另外4名來自B學校且2名為女棋手從這7名隊員中隨機選派4名隊員參加第一階段的比賽
求在參加第一階段比賽的隊員中,恰有1名女棋手的概率;
Ⅱ
設X為選出的4名隊員中A、B兩校人數之差的絕對值,求隨機變量X的分布列和數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,曲線
的參數方程為
(
為參數),將曲線
上所有點的橫坐標縮短為原來的
,縱坐標縮短為原來的
,得到曲線
,在以坐標原點
為極點,
軸的正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的極坐標方程及直線
的直角坐標方程;
(2)設點為曲線
:
上的任意一點,求點
到直線
的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓x2+y2=8內有一點P0(-1,2),AB為過點P0且傾斜角為α的弦.
(1)當α=時,求AB的長;
(2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】空氣質量指數是一種反映和評價空氣質量的方法,
指數與空氣質量對應如下表所示:
如圖是某城市2018年12月全月的指數變化統計圖.
根據統計圖判斷,下列結論正確的是( )
A. 整體上看,這個月的空氣質量越來越差
B. 整體上看,前半月的空氣質量好于后半月的空氣質量
C. 從數據看,前半月的方差大于后半月的方差
D. 從數據看,前半月的平均值小于后半月的平均值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,
,
,
在線段
上,
是線段
的中點,沿
把平面
折起到平面
的位置,使
平面
,則下列命題正確的編號為______.
①二面角的余弦值為
;
②設折起后幾何體的棱的中點
,則
平面
;
③;
④四棱錐的內切球的表面積為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】宋元時期數學名著《算學啟蒙》中有關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.如圖是源于其思想的一個程序框圖,若輸入,
,則輸出的
等于( )
A. 3B. 4C. 5D. 6
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com