【題目】德國著名數學家狄利克雷在數學領域成就顯著,以其名命名的函數f(x)= ,稱為狄利克雷函數,則關于函數f(x)有以下四個命題: ①f(f(x))=1;
②函數f(x)是偶函數;
③任意一個非零有理數T,f(x+T)=f(x)對任意x∈R恒成立;
④存在三個點A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC為等邊三角形.
其中真命題的個數是( )
A.4
B.3
C.2
D.1
【答案】A
【解析】解:①∵當x為有理數時,f(x)=1;當x為無理數時,f(x)=0, ∴當x為有理數時,ff((x))=f(1)=1;當x為無理數時,f(f(x))=f(0)=1,
即不管x是有理數還是無理數,均有f(f(x))=1,故①正確;
②∵有理數的相反數還是有理數,無理數的相反數還是無理數,
∴對任意x∈R,都有f(﹣x)=f(x),故②正確;
③若x是有理數,則x+T也是有理數;若x是無理數,則x+T也是無理數,
∴根據函數的表達式,任取一個不為零的有理數T,f(x+T)=f(x)對x∈R恒成立,故③正確;
④取x1=﹣ ,x2=0,x3=
,可得f(x1)=0,f(x2)=1,f(x3)=0,
∴A( ,0),B(0,1),C(﹣
,0),恰好△ABC為等邊三角形,故④正確.
即真命題的個數是4個,
故選:A.
①根據函數的對應法則,可得不管x是有理數還是無理數,均有f(f(x))=1;
②根據函數奇偶性的定義,可得f(x)是偶函數;
③根據函數的表達式,結合有理數和無理數的性質;
④取x1=﹣ ,x2=0,x3=
,可得A(
,0),B(0,1),C(﹣
,0),三點恰好構成等邊三角形.
科目:高中數學 來源: 題型:
【題目】已知函數是定義在R上的奇函數,其中
為自然對數的底數.
(1)求實數的值;
(2)若存在,使得不等式
成立,求實數
的取值范圍;
(3)若函數在
上不存在最值,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長分別為方程 的兩個實數根,若斜邊BC上有異于端點的E,F兩點,且EF=1,∠EAF=θ,則tanθ的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F分別為PC,CD的中點
(1)求證:平面ABE⊥平面BEF
(2)設PA=a,若平面EBD與平面ABCD所成銳二面角θ∈[ ,
],求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x+2|+|x+a|(a∈R).
(Ⅰ)若a=5,求函數f(x)的最小值,并寫出此時x的取值集合;
(Ⅱ)若f(x)≥3恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實數x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式;
(3)設g(x)=f(x)-x,x∈[0,+∞),若g(x)圖象上的點都位于直線y=
的上方,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com