科目:高中數學 來源:2011-2012學年廣東省連州市高三12月月考理科數學試卷(解析版) 題型:解答題
(滿分14分)設函數.若方程
的根為0和2,且
.
(1). 求函數的解析式;
(2) 已知各項均不為零的數列滿足:
為該數列的前n項和),求該數列的通項
;
(3)如果數列滿足
.求證:當
時,恒有
成立.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年上海市崇明縣高三高考模擬考試二模理科數學試卷(解析版) 題型:解答題
已知數列是各項均不為0的等差數列,公差為d,
為其前n項和,且滿足
,
.數列
滿足
,
,
為數列
的前n項和.
(1)求數列的通項公式
和數列
的前n項和
;
(2)若對任意的,不等式
恒成立,求實數
的取值范圍;
(3)是否存在正整數,使得
成等比數列?若存在,求出所有
的值;若不存在,請說明理由.
【解析】第一問利用在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
第二問,①當n為偶數時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
第三問,
若成等比數列,則
,
即.
由,可得
,即
,
.
(1)(法一)在中,令n=1,n=2,
得 即
解得,,
[
又時,
滿足
,
,
.
(2)①當n為偶數時,要使不等式恒成立,即需不等式
恒成立.
,等號在n=2時取得.
此時
需滿足
.
②當n為奇數時,要使不等式恒成立,即需不等式
恒成立.
是隨n的增大而增大, n=1時
取得最小值-6.
此時
需滿足
.
綜合①、②可得的取值范圍是
.
(3),
若成等比數列,則
,
即.
由,可得
,即
,
.
又,且m>1,所以m=2,此時n=12.
因此,當且僅當m=2,
n=12時,數列中的
成等比數列
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com