精英家教網 > 高中數學 > 題目詳情

【題目】過雙曲線的左焦點作圓的切線,切點為,延長交雙曲線右支于點.若線段的中點為,為坐標原點,則的大小關系是(

A. B.

C. D. 無法確定

【答案】A

【解析】

將點P置于第一象限.設F1是雙曲線的右焦點,連接PF1.由M、O分別為FP、FF1的中點,知|MO|=|PF1|.由雙曲線定義,知|PF|﹣|PF1|=2a,|FT|==b.由此知|MO|﹣|MT|=(|PF1|﹣|PF|)+|FT|=b﹣a.

將點P置于第一象限.

設F1是雙曲線的右焦點,連接PF1

M、O分別為FP、FF1的中點,∴|MO|=|PF1|.

又由雙曲線定義得,

|PF|﹣|PF1|=2a,

|FT|==b.

|MO|﹣|MT|

=|PF1|﹣|MF|+|FT|

=(|PF1|﹣|PF|)+|FT|

=b﹣a.

故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某公司的電子新產品未上市時,原定每件售價100元,經過市場調研發現,該電子新產品市場潛力很大,該公司決定從第一周開始銷售時,該電子產品每件售價比原定售價每周漲價4元,5周后開始保持120元的價格平穩銷售,10周后由于市場競爭日益激烈,每周降價2元,直到15周結束,該產品不再銷售.

(Ⅰ)求售價(單位:元)與周次)之間的函數關系式;

(Ⅱ)若此電子產品的單件成本(單位:元)與周次之間的關系式為,,,試問:此電子產品第幾周的單件銷售利潤(銷售利潤售價成本)最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是奇函數

()求實數的值;

()用定義證明函數上的單調性;

()若對任意的,不等式恒成立,求實數的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線ly=3x+3,求:

(1)點P(4,5)關于直線l的對稱點坐標;

(2)直線l1yx-2關于直線l的對稱直線的方程;

(3)直線l關于點A(3,2)的對稱直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交通安全法有規定:機動車行經人行橫道時,應當減速行駛;遇行人正在通過人行橫道,應當停車讓行.機動車行經沒有交通信號的道路時,遇行人橫過馬路,應當避讓.我們將符合這條規定的稱為“禮讓斑馬線”,不符合這條規定的稱為“不禮讓斑馬線”.下表是六安市某十字路口監控設備所抓拍的5個月內駕駛員“不禮讓斑馬線”行為的統計數據:

月份

1

2

3

4

5

“不禮讓斑馬線”的駕駛員人數

120

105

100

85

90

1)根據表中所給的5個月的數據,可用線性回歸模型擬合的關系,請用相關系數加以說明;

2)求“不禮讓斑馬線”的駕駛員人數關于月份之間的線性回歸方程;

3)若從4,5月份“不禮讓斑馬線”的駕駛員中分別選取4人和2人,再從所選取的6人中任意抽取2人進行交規調查,求抽取的2人分別來自兩個月份的概率;

參考公式:線性回歸方程,其中,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,平面底面的中點,是棱的中點,.

1)證明:平面平面.

2)求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面四個命題:

在定義域上單調遞增;

②若銳角,滿足,則;

是定義在上的偶函數,且在上是增函數,若,則;

④函數的一個對稱中心是;

其中真命題的序號為______.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求函數的零點;

(2)當,求函數上的最大值;

(3)對于給定的正數a,有一個最大的正數,使時,都有,試求出這個正數,并求它的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视