【題目】已知橢圓,上頂點為
,焦點為
,點
是橢圓
上異于點
的不同的兩點,且滿足直線
與直線
斜率之積為
.
(1)若為橢圓上不同于長軸端點的任意一點,求
面積的最大值;
(2)試判斷直線是否過定點;若是,求出定點坐標;若否,請說明理由.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=﹣ x3+
x2﹣2x(a∈R)
(1)當a=3時,求函數f(x)的單調區間;
(2)若對于任意x∈[1,+∞)都有f′(x)<2(a﹣1)成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(10分)四面體ABCD及其三視圖如圖所示,平行于棱AD,BC的平面分別交四面體的棱AB,BD,DC,CA于點E,F,G,H.
(1)求四面體ABCD的體積;
(2)證明:四邊形EFGH是矩形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點
,且與定直線
相切,動圓圓心
的軌跡方程為
,直線
過點
交曲線
于
兩點.
(1)若交
軸于點
,求
的取值范圍;
(2)若的傾斜角為
,在
上是否存在點
使
為正三角形?若能,求點
的坐標;若不能,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l的方程為ρsin(θ+ )=
,圓C的方程為
(θ為參數).
(1)把直線l和圓C的方程化為普通方程;
(2)求圓C上的點到直線l距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
不超過
尾/立方米時,
的值為
千克/年;當
時,
是
的一次函數,且當
時,
.
()當
時,求
關于
的函數的表達式.
()當養殖密度
為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的前n項和為Sn , Sn=n2+2n,bn=anan+1cos(n+1)π,數列{bn} 的前n項和為Tn , 若Tn≥tn2對n∈N*恒成立,則實數t的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com