【題目】已知函數.
(I)試判斷函數的單調性;
(Ⅱ)若函數在
上有且僅有一個零點,
(i)求證:此零點是的極值點;
(ⅱ)求證:.
(本題可能會用到的數據:)
【答案】(I)見解析;(Ⅱ)(i)證明見解析;(ii)證明見解析.
【解析】
(Ⅰ)先求得導函數,然后對分類討論,即可得單調區間.
(Ⅱ)(i)先求得反函數,代入即可求得
的解析式.求得
,根據僅有一個零點,可知
在
單調遞增,通過檢驗
與
函數值的符號,可判斷零點所在區間為
.通過判斷
時,
時,
,即可知
極小值點為
.
(ⅱ)根據(i)由可解得
.構造函數
通過檢驗
與
可知
,通過分析
在
單調遞增,可知當
時,
成立,即證明
.
(I)
時,
恒成立
所以在
單調遞增,沒有單調遞減區間.
時,解不等式
可得:
,
所以此時在
單調遞減,在
單調遞增.
綜上:時,
在
單調遞減,在
單調遞增,
時,
在
單調遞增,沒有單調遞減區間.
(Ⅱ)(i)
則
函數在
上有且僅有一個零點
在
單調遞增
又因為
且
,使得
且時,
時,
在
單調遞減,
單調遞增
在
上有且僅有一個零點,所以此零點為極小值點
(ii)由(i)得,即
,
解得,且
.
設
,則
在
單調遞減.
因為
.
又在
單調遞增,
,
科目:高中數學 來源: 題型:
【題目】現有10個不同的產品,其中4個次品,6個正品.現每次取其中一個進行測試,直到4個次品全測完為止,若最后一個次品恰好在第五次測試時被發現,則該情況出現的概率是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年1月26日,甘肅省人民政府辦公廳發布《甘肅省關于餐飲業質量安全提升工程的實施意見》,衛生部對16所大學食堂的“進貨渠道合格性”和“食品安全”進行量化評估.滿10分者為“安全食堂”,評分7分以下的為“待改革食堂”.評分在4分以下考慮為“取締食堂”,所有大學食堂的評分在7~10分之間,以下表格記錄了它們的評分情況:
(1)現從16所大學食堂中隨機抽取3個,求至多有1個評分不低于9分的概率;
(2)以這16所大學食堂評分數據估計大學食堂的經營性質,若從全國的大學食堂任選3個,記表示抽到評分不低于9分的食堂個數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線C的參數方程為(
為參數),以平面直角坐標系的原點O為極點,x軸正半軸為極軸建立極坐標系.
(1)求曲線C的極坐標方程;
(2)過點,傾斜角為
的直線l與曲線C相交于M,N兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一件剛出土的珍貴文物要在博物館大廳中央展出,需要設計各面是玻璃平面的無底正四棱柱將其罩住,罩內充滿保護文物的無色氣體.已知文物近似于塔形,高1.8米,體積0.5立方米,其底部是直徑為0.9米的圓形,要求文物底部與玻璃罩底邊至少間隔0.3米,文物頂部與玻璃罩上底面至少間隔0.2米,氣體每立方米1000元,則氣體費用最少為( )元
A.4500B.4000C.2880D.2380
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐P-ABCD中,底面ABCD為直角梯形,平面ABCD,且
.
(1)求證:平面PBD;
(2)若PB與平面ABCD所成的角為,求二面角D-PC-B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1所示,在等腰梯形ABCD中,,
,垂足為E,
,
將
沿EC折起到
的位置,如圖2所示,使平面
平面ABCE.
(1)連結BE,證明:平面
;
(2)在棱上是否存在點G,使得
平面
,若存在,直接指出點G的位置
不必說明理由
,并求出此時三棱錐
的體積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若動點到定點
與定直線
的距離之和為
.
(1)求點的軌跡方程,并在答題卡所示位置畫出方程的曲線草圖;
(2)(理)記(1)得到的軌跡為曲線,問曲線
上關于點
對稱的不同點有幾對?請說明理由.
(3)(文)記(1)得到的軌跡為曲線,若曲線
上恰有三對不同的點關于點
對稱,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年,國家逐步推行全新的高考制度.新高考不再分文理科,某省采用模式,其中語文、數學、外語三科為必考科目,每門科目滿分均為
分.另外考生還要依據想考取的高校及專業的要求,結合自己的興趣愛好等因素,在思想政治、歷史、地理、物理、化學、生物
門科目中自選
門參加考試(
選
),每門科目滿分均為
分.為了應對新高考,某高中從高一年級
名學生(其中男生
人,女生
人)中,采用分層抽樣的方法從中抽取
名學生進行調查,其中,女生抽取
人.
(1)求的值;
(2)學校計劃在高一上學期開設選修中的“物理”和“地理”兩個科目,為了了解學生對這兩個科目的選課情況,對抽取到的名學生進行問卷調查(假定每名學生在“物理”和“地理”這兩個科目中必須選擇一個科目且只能選擇一個科目),下表是根據調查結果得到的一個不完整的
列聯表,請將下面的
列聯表補充完整,并判斷是否有
的把握認為選擇科目與性別有關?說明你的理由;
選擇“物理” | 選擇“地理” | 總計 | |
男生 | |||
女生 | |||
總計 |
(3)在抽取到的名女生中,按(2)中的選課情況進行分層抽樣,從中抽出
名女生,再從這
名女生中抽取
人,設這
人中選擇“物理”的人數為
,求
的分布列及期望.附:
,
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com