精英家教網 > 高中數學 > 題目詳情

【題目】中,內角A,B,C的對邊分別是a,b,c,且a2+b2ab=c2.

(1)求C;

(2)設cos Acos B=,,求的值.

【答案】(1);(2)1或4.

【解析】(1)因為a2+b2ab=c2

所以由余弦定理有cos C=,

.

(2)由題意得=,

因此(tan αsin Acos A)(tan αsin Bcos B)=

即tan2αsin Asin Btan α(sin Acos B+cos Asin B)+cos Acos B=,

即tan2αsin Asin Btan αsin(A+B)+cos Acos B= .

因為,

所以A+B=,

所以sin(A+B)=.

因為cos(A+B)=cos Acos Bsin Asin B,即-sin Asin B=

則sin Asin B=.

代入得tan2α5tan α+4=0,解得tan α=1或tan α=4.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】ABC中,角A,B,C所對的邊分別是a,b,c,且.

1)證明:sinAsinB=sinC;

2)若,求tanB.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)是定義在R上的奇函數,當x≥0時,f(x)=x2﹣3x,則函數g(x)=f(x)﹣x+3的零點的集合為(
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數(a0,且a1)在R上單調遞減,且關于x的方程恰有兩個不相等的實數解,則a的取值范圍是

A.

B.

C.

D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 是定義在(﹣1,1)上的奇函數,且f( )= ,則不等式f(t﹣1)+f(t)<0的解集為(
A.(0,1)
B.(0, ]
C.(0,
D.( ,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著國民生活水平的提高,利用長假旅游的人越來越多.某公司統計了2012到2016年五年間本公司職員每年春節期間外出旅游的家庭數,具體統計數據如下表所示:

(Ⅰ)從這5年中隨機抽取兩年,求外出旅游的家庭數至少有1年多于20個的概率;

(Ⅱ)利用所給數據,求出春節期間外出旅游的家庭數與年份之間的回歸直線方程,判斷它們之間是正相關還是負相關;并根據所求出的直線方程估計該公司2019年春節期間外出旅游的家庭數.

參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數據(單位小時).

(1)應收集多少位女生樣本數據?

(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據分組區間為:,試估計該校學生每周平均體育運動時間超過4小時的概率.

(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時.請完成每周平均體育運動時間與性別的列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為該校學生的每周平均體育運動時間與性別有關?

男生

女生

每周平均體育運動時間不超過4小時

每周平均體育運動時間超過4小時

合計

300

附:,其中.

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某單位建造一間地面面積為12m2的背面靠墻的矩形小房子,由于地理位置的限制,房子側面的長度x不得超過am.房屋正面的造價為400元/m2 , 房屋側面的造價為150元/m2 , 屋頂和地面的造價費用合計為5800元,如果墻高為3m,且不計房屋背面的費用.當側面的長度為多少時,總造價最低?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養殖場進行某水產品的新、舊網箱養殖方法的產量對比,收獲時各隨機抽取了100 個網箱,測量各箱水產品的產量(單位:kg).其頻率分布直方圖如下:

(1)設兩種養殖方法的箱產量相互獨立,記A表示事件:“舊養殖法的箱產量低于50kg,新養殖法的箱產量不低于50kg”,估計A的概率;

(2)填寫下面列聯表,并根據列聯表判斷是否有99%的把握認為箱產量與養殖方法有關:

箱產量<50kg

箱產量≥50kg

舊養殖法

新養殖法

(3)根據箱產量的頻率分布直方圖,求新養殖法箱產量的中位數的估計值(精確到0.01).

附:,

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视