精英家教網 > 高中數學 > 題目詳情

【題目】對于實數x,符號[x]表示不超過x的最大整數,例如[π]=3,[﹣1.08]=﹣2,定義函數f(x)=x﹣[x],下列命題中正確命題的序號
①函數f(x)的最大值為1;
②函數f(x)的最小值為0;
③方程f(x)﹣ =0有無數個解;
④函數f(x)是增函數;
⑤對任意的x∈R,函數f(x)滿足f(x+1)=f(x);
⑥函數f(x)的圖象與函數g(x)=|lgx|的圖象的交點個數為10個.

【答案】②③⑤
【解析】解:定義函數f(x)=x﹣[x],其圖象:x為整數時f(x)=0,x不為整數時f(x)∈(0,1)
可得:①函數f(x)的最大值為1,不正確;
②函數f(x)的最小值為0,正確;
③函數G(x)=f(x)﹣ 有無數個零點,正確;
④函數f(x)是周期函數,不是增函數,因此不正確.
⑤函數f(x)是周期為1的函數,正確.
⑥函數f(x)的圖象與函數g(x)=|lgx|的圖象的交點個數為11個,不正確.
所以答案是:②③⑤.

【考點精析】關于本題考查的命題的真假判斷與應用,需要了解兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數
(1)在如圖給定的直角坐標系內畫出f(x)的圖象;(直接畫圖,不需列表)

(2)寫出f(x)的單調遞增區間及值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知指數函數y=g(x)滿足:g(3)=27,定義域為R的函數f(x)= 是奇函數.
(1)確定y=g(x),y=f(x)的解析式;
(2)若h(x)=kx﹣g(x)在(0,1)上有零點,求k的取值范圍;
(3)若對任意的t∈(1,4),不等式f(2t﹣3)+f(t﹣k)>0恒成立,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等差數列{an}的首項a1=3,且公差d≠0,其前n項和為Sn , 且a1 , a4 , a13分別是等比數列{bn}的b2 , b3 , b4 . (Ⅰ)求數列{an}與{bn}的通項公式;
(Ⅱ)證明

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2016年10月,繼微信支付對提現轉賬收費后,支付寶也開始對提現轉賬收費,隨著這兩大目前用戶使用粘度最高的第三方支付開始收費,業內人士分析,部分對價格敏感的用戶或將回流至傳統銀行體系,某調查機構對此進行調查,并從參與調查的數萬名支付寶用戶中隨機選取200人,把這200人分為3類:認為使用支付寶方便,仍使用支付寶提現轉賬的用戶稱為“類用戶”;根據提現轉賬的多少確定是否使用支付寶的用戶稱為“類用戶”;提前將支付寶賬戶內的資金全部提現,以后轉賬全部通過銀行的用戶稱為“類用戶”,各類用戶的人數如圖所示:

同時把這200人按年齡分為青年人組與中老年人組,制成如圖所示的列聯表:

類用戶

類用戶

合計

青年

20

中老年

40

合計

200

(Ⅰ)完成列聯表并判斷是否有99.5%的把握認為“類用戶與年齡有關”;

(Ⅱ)從這200人中按類用戶、類用戶、類用戶進行分層抽樣,從中抽取10人,再從這10人中隨機抽取4人,求在這4人中類用戶、類用戶、類用戶均存在的概率;

(Ⅲ)把頻率作為概率,從支付寶所有用戶(人數很多)中隨機抽取3人,用表示所選3人中類用戶的人數,求的分布列與期望.

附:

0.01

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場欲經銷某種商品,考慮到不同顧客的喜好,決定同時銷售A、B兩個品牌,根據生產廠家營銷策略,結合本地區以往經銷該商品的大數據統計分析,A品牌的銷售利潤y1與投入資金x成正比,其關系如圖1所示,B品牌的銷售利潤y2與投入資金x的算術平方根成正比,其關系如圖2所示(利潤與資金的單位:萬元).

(1)分別將A、B兩個品牌的銷售利潤y1、y2表示為投入資金x的函數關系式;
(2)該商場計劃投入5萬元經銷該種商品,并全部投入A、B兩個品牌,問:怎樣分配這5萬元資金,才能使經銷該種商品獲得最大利潤,其最大利潤為多少萬元?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線 ,P為雙曲線上一點,F1 , F2是雙曲線的兩個焦點,且∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商區停車場臨時停車按時段收費,收費標準為:每輛汽車一次停車不超過1小時收費6元,超過1小時的部分每小時收費8元(不足1小時的部分按1小時計算).現有甲、乙二人在該商區臨時停車,兩人停車都不超過4小時. (Ⅰ)若甲停車1小時以上且不超過2小時的概率為 ,停車付費多于14元的概率為 ,求甲停車付費恰為6元的概率;
(Ⅱ)若每人停車的時長在每個時段的可能性相同,求甲、乙二人停車付費之和為36元的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從2 012名學生中選取50名學生參加數學競賽,若采用下面的方法選。合扔煤唵坞S機抽樣從2 012人中剔除12人,剩下的2 000人再按系統抽樣的方法抽取50人,則在2 012人中,每人入選的概率(
A.不全相等
B.均不相等
C.都相等,且為
D.都相等,且為

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视