精英家教網 > 高中數學 > 題目詳情

【題目】已知向量 =(1,2), =(cosα,sinα),設 = ﹣t (t為實數).
(1)t=1 時,若 ,求2cos2α﹣sin2α的值;
(2)若α= ,求| |的最小值,并求出此時向量 方向上的投影.

【答案】
(1)解:t=1, = ﹣t =(1﹣cosα,2﹣sinα).

∴cosα(1﹣sinα)﹣sinα(1﹣cosα)=0,

∴tanα=2;

∴2cos2α﹣sin2α= = =﹣


(2)解:α= ,| |= = =

當t= 時, =

當t= 時, 時,

= =(1,2)﹣ =

∴向量 方向上的投影 = =


【解析】(1)利用向量共線定理可得tanα,再利用同角三角函數基本關系式即可得出;(2)利用向量模的計算公式、二次函數的單調性、向量投影計算公式即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點在拋物線 的準線上,記的焦點為,過點且與軸垂直的直線與拋物線交于 兩點,則線段的長為( )

A. 4 B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,已知點,曲線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,點的極坐標為,直線的極坐標方程為,且過點;過點與直線平行的直線為 與曲線相交于兩點.

(1)求曲線上的點到直線距離的最小值;

(2)求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在中, 的中點為,且,點的延長線上,且.固定邊,在平面內移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標原點如圖所示建立平面直角坐標系.

(Ⅰ)求曲線的方程;

(Ⅱ)設動直線交曲線兩點,且以為直徑的圓經過點,求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,隔河看兩目標A、B,但不能到達,在岸邊選取相距 km的C、D兩點,并測得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內),求兩目標A、B之間的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數是定義在上的奇函數,且當時, ,則對任意,函數的零點個數至多有( )

A. 3個 B. 4個 C. 6個 D. 9個

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某種產品的質量以其質量指標值衡量,并依據質量指標值劃分等極如下表:

質量指標值

等級

三等品

二等品

一等品

從某企業生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:

(1)根據以上抽樣調查數據 ,能否認為該企業生產的這種產品符合“一、二等品至少要占全部產品90%”的規定?

(2)在樣本中,按產品等極用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;

(3)該企業為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值近似滿足,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在平面直角坐標系中,曲線 ,曲線 為參數),以坐標原點為極點, 軸正半軸為極軸,建立極坐標系.

(Ⅰ)求曲線, 的極坐標方程;

(Ⅱ)曲線 為參數, )分別交, 兩點,當取何值時, 取得最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和為Sn,且滿足an=2Sn﹣1(n∈N*) (Ⅰ)求證:數列{an}為等比數列;
(Ⅱ)若bn=(2n+1)an , 求{bn}的前n項和Tn

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视