【題目】在平面直角坐標系中,直線
的參數方程為
(其中t為參數),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點A的極坐標為
,直線
經過點A.曲線C的極坐標方程為
.
(1)求直線的普通方程與曲線C的直角坐標方程;
(2)過點作直線
的垂線交曲線C于D,E兩點(D在x軸上方),求
的值.
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數,將曲線
經過伸縮變換
后得到曲線
.在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)說明曲線是哪一種曲線,并將曲線
的方程化為極坐標方程;
(2)已知點是曲線
上的任意一點,又直線
上有兩點
和
,且
,又點
的極角為
,點
的極角為銳角.求:
①點的極角;
②面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2021年某省將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,橢圓
上的點到其左焦點
的最大距離為
.
(1)求橢圓的標準方程;
(2)過橢圓左焦點
的直線
與橢圓
交于
兩點,直線
,過點
作直線
的垂線與直線
交于點
,求
的最小值和此時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.
(Ⅰ)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式.
(Ⅱ)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:
日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
頻數 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
(i)假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數;
(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發生的概率,求當天的利潤不少于75元的概率.
(命題意圖)本題主要考查給出樣本頻數分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數,將曲線
經過伸縮變換
后得到曲線
.在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)說明曲線是哪一種曲線,并將曲線
的方程化為極坐標方程;
(2)已知點是曲線
上的任意一點,又直線
上有兩點
和
,且
,又點
的極角為
,點
的極角為銳角.求:
①點的極角;
②面積的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}的各項均為正數,且2a1+3a2=1, =9a2a6.
(1)求數列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數列的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓規是用來畫橢圓的一種器械,它的構造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導槽,在直尺上有兩個固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉動一周,則點M的軌跡C是一個橢圓,其中|MA|=2,|MB|=1,如圖,以兩條導槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標系.
(1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ(0≤φ<2π),用表示點M的坐標,并求出C的普通方程;
(2)已知過C的左焦點F,且傾斜角為α(0≤α)的直線l1與C交于D,E兩點,過點F且垂直于l1的直線l2與C交于G,H兩點.當
,|GH|,
依次成等差數列時,求直線l2的普通方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com