精英家教網 > 高中數學 > 題目詳情

【題目】某花店每天以每枝5元的價格從農場購進若干枝玫瑰花,然后以每枝10元的價格出售.如果當天賣不完,剩下的玫瑰花做垃圾處理.

)若花店一天購進17枝玫瑰花,求當天的利潤y(單位:元)關于當天需求量n(單位:枝,n∈N)的函數解析式.

)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數

10

20

16

16

15

13

10

(i)假設花店在這100天內每天購進17枝玫瑰花,求這100天的日利潤(單位:元)的平均數;

(ii)若花店一天購進17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發生的概率,求當天的利潤不少于75元的概率.

(命題意圖)本題主要考查給出樣本頻數分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

【答案】

【解析】

試題(1)根據賣出一枝可得利潤5元,賣不出一枝可得賠本5元,即可建立分段函數;(2100天的日利潤的平均數,利用100天的銷售量除以100即可得到結論;當天的利潤不少于75元,當且僅當日需求量不少于16枝,故可求當天的利潤不少于75元的概率

試題解析:(1)當日需求量n≥17時,利潤y85

當日需求量n<17時,利潤y10n85

所以y關于n的函數解析式為n∈N).

2100天中有10天的日利潤為55元,20天的日利潤為65元,

16天的日利潤為75元,54天的日利潤為85元,

所以這100天的日利潤的平均數為×55×1065×2075×1685×54)=764

利潤不低于75元時日需求量不少于16枝,

故當天的利潤不少于75元的概率為p0160160150130107

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在正方體中,點E是棱的中點,點F是線段上的一個動點.有以下三個命題:

①異面直線所成的角是定值;

②三棱錐的體積是定值;

③直線與平面所成的角是定值.

其中真命題的個數是( )

A. 3 B. 2 C. 1 D. 0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一世又叫一代”.東漢·王充《論衡·宜漢篇》:且孔子所謂一世,三十年也,清代·段玉裁《說文解字注》:三十年為一世,按父子相繼曰世”.而當代中國學者測算一代平均為25.另根據國際一家研究機構的研究報告顯示,全球家族企業的平均壽命其實只有26年,約占總量的的家族企業只能傳到第二代,約占總量的的家族企業只能傳到第三代,約占總量的家族企業可以傳到第四代甚至更久遠(為了研究方便,超過四代的可忽略不計).根據該研究機構的研究報告,可以估計該機構所認為的一代大約為(

A.23B.22C.21D.20

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】波羅尼斯(古希臘數學家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有,,則當的面積最大時,AC邊上的高為_______________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數方程為(其中t為參數),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,點A的極坐標為,直線經過點A.曲線C的極坐標方程為

1)求直線的普通方程與曲線C的直角坐標方程;

2)過點作直線的垂線交曲線CD,E兩點(Dx軸上方),求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,設函數

1)試討論的單調性;

2)設函數,是否存在實數,使得存在兩個極值點,,且滿足?若存在,求的取值范圍;若不存在,請說明理由.

注:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》中盈不足章中有這樣一則故事:今有良馬與駑馬發長安,至齊. 齊去長安三千里. 良馬初日行一百九十三里,日增一十二里;駑馬初日行九十七里,日減二里.為了計算每天良馬和駑馬所走的路程之和,設計框圖如下圖. 若輸出的 的值為 350,則判斷框中可填( )

A. B.

C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C的參數方程為,(θ為參數),以原點為極點,x軸非負半軸為極軸建立極坐標系.

1)求曲線C的極坐標方程;

2)在平面直角坐標系xOy中,A(﹣2,0),B0,﹣2),M是曲線C上任意一點,求ABM面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個多面體的直觀圖及三視圖如圖所示,其中M ,N 分別是AF、BC 的中點

1)求證:MN∥平面CDEF

2)求多面體A-CDEF的體積.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视