【題目】
“健步走”是一種方便而又有效的鍛煉方式,李老師每天堅持“健步走”,并用計步器進行統計.他最近8天“健步走”步數的條形統計圖及相應的消耗能量數據表如下:
(I)求李老師這8天“健步走”步數的平均數;
(II)從步數為16千步,17千步,18千步的6天中任選2天,設李老師這2天通過“健步走”消耗的能量和為,求
的分布列及數學期望.
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,
為
上異于原點的任意一點,過點
的直線
交
于另一點
,交
軸的正半軸于點
,且有
.當點
的橫坐標為3時,
為正三角形.
(1)求的方程;
(2)延長交拋物線于點
,過點
作拋物線的切線
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】同時拋擲甲、乙兩顆骰子.
(1)求事件A“甲的點數大于乙的點數”的概率;
(2)若以拋擲甲、乙兩顆骰子點數m,n作為點P的坐標(m,n),求事件B“P落在圓內”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
短軸頂點在圓
上.
(Ⅰ)求橢圓方程;
(Ⅱ)已知點,若斜率為1的直線
與橢圓
相交于
兩點,試探究以
為底邊的等腰三角形
是否存在?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】曲線上任意一點M滿足
, 其中F
(-
F
(
拋物線
的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(I)求,
的標準方程;
(II)請問是否存在直線l滿足條件:① 過的焦點
;② 與
交于不同兩點
,
且滿足
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為加強學生的交通安全教育,對學校旁邊,
兩個路口進行了8天的檢測調查,得到每天各路口不按交通規則過馬路的學生人數(如莖葉圖所示),且
路口數據的平均數比
路口數據的平均數小2.
(1)求出路口8個數據中的中位數和莖葉圖中
的值;
(2)在路口的數據中任取大于35的2個數據,求所抽取的兩個數據中至少有一個不小于40的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四邊形中,已知
,
,點
在
軸上,
,且對角線
.
(1)求點的軌跡
的方程;
(2)若點是直線
上任意一點,過點
作點
的軌跡
的兩切線
,
為切點,直線
是否恒過一定點?若是,請求出這個定點的坐標;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com