【題目】已知橢圓過點
,離心率為
,
為坐標原點.
(1)求橢圓的標準方程;
(2)設為橢圓
上的三點,
與
交于點
,且
,當
的中點恰為點
時,判斷
的面積是否為常數,并說明理由.
【答案】(1);(2)
的面積是常數為
,理由見解析.
【解析】
(1)由題a=再由離心率,求得c,再由
,即可求得方程;(2)若點
是橢圓的右頂點,求得
的面積為
,若點
不是橢圓的左、右頂點,則設直線
的方程為:
,與橢圓聯立,由韋達定理得
的坐標,弦長公式,點到線的距離公式,進而求出
的面積為常數
(1)由已知易得,
∴,
故橢圓的標準方程為:
.
(2)①若點是橢圓的右頂點(左頂點一樣),則
,
∵,
在線段
上,
∴,此時
軸,求得
,
∴的面積等于
.
②若點不是橢圓的左、右頂點,則設直線
的方程為:
,
,
,
由得
,則
,
,
∴的中點
的坐標為
,
∴點的坐標為
,將其代入橢圓方程,化簡得
.
∴
.
點
到直線
的距離
,
∴的面積
.
綜上可知,的面積為常數
.
科目:高中數學 來源: 題型:
【題目】環保部門要對所有的新車模型進行廣泛測試,以確定它的行車里程的等級,下表是對100輛新車模型在一個耗油單位內行車里程(單位:公里)的測試結果.
分組 | 頻數 |
6 | |
10 | |
20 | |
30 | |
18 | |
12 | |
4 |
(1)做出上述測試結果的頻率分布直方圖,并指出其中位數落在哪一組;
(2)用分層抽樣的方法從行車里程在區間與
的新車模型中任取5輛,并從這5輛中隨機抽取2輛,求其中恰有一個新車模型行車里程在
內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某單位共有老年人120人,中年人360人,青年人n人,為調查身體健康狀況,需要從中抽取一個容量為m的樣本,用分層抽樣的方法進行抽樣調查,樣本中的中年人為6人,則n和m的值不可以是下列四個選項中的哪組( )
A.n=360,m=14B.n=420,m=15C.n=540,m=18D.n=660,m=19
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】黨中央、國務院歷來高度重視青少年的健康成長.“少年強則國強”,青少年身心健康、體魄強健、意志堅強、充滿活力,是一個民族旺盛生命力的體現,是社會文明進步的標志,是國家綜合實力的重要方面.全面實施《國家學生體質健康標準》,把健康素質作為評價學生全面健康發展的重要指標,是新時代的要求.《國家學生體質健康標準》有一項指標是學生體質指數(),其計算公式為:
,當
時,認為“超重”,應加強鍛煉以改善
.某高中高一、高二年級學生共2000人,人數分布如表(a).為了解這2000名學生的
指數情況,從中隨機抽取容量為160的一個樣本.
表(a)
性別 年級 | 男生 | 女生 | 合計 |
高一年級 | 550 | 650 | 1200 |
高二年級 | 425 | 375 | 800 |
合計 | 975 | 1025 | 2000 |
(1)為了使抽取的160個學生更具代表性,宜采取分層抽樣,試給出一個合理的分層抽樣方案,并確定每層應抽取出的學生人數;
(2)分析這160個學生的值,統計出“超重”的學生人數分布如表(b).
表(b)
性別 年級 | 男生 | 女生 |
高一年級 | 4 | 6 |
高二年級 | 2 | 4 |
(。┰嚬烙嬤@2000名學生中“超重”的學生數;
(ⅱ)對于該校的2000名學生,應用獨立性檢驗的知識,可分析出性別變量與年級變量哪一個與“是否超重”的關聯性更強.應用卡方檢驗,可依次得到的觀測值
,
,試判斷
與
的大小關系.(只需寫出結論)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,
是圓M內一定點,動點P為圓M上任意一點,線段PN的垂直平分線l和半徑MP相交于點C.
(1)求點C的軌跡方程;
(2)設直線與C交于不同兩點A,B,點O為坐標原點,當
的面積S取最大值時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,共享單車已經悄然進入了廣大市民的日常生活,并慢慢改變了人們的出行方式.為了更好地服務民眾,某共享單車公司在其官方中設置了用戶評價反饋系統,以了解用戶對車輛狀況和優惠活動的評價,現從評價系統中選出
條較為詳細的評價信息進行統計,車輛狀況和優惠活動評價的
列聯表如下:
對優惠活動好評 | 對優惠活動不滿意 | 合計 | |
對車輛狀況好評 | |||
對車輛狀況不滿意 | |||
合計 |
(1)能否在犯錯誤的概率不超過的前提下認為優惠活動好評與車輛狀況好評之間有關系?
(2)為了回饋用戶,公司通過向用戶隨機派送騎行券,用戶可以將騎行券用于騎行付費,也可以通過
轉贈給好友某用戶共獲得了
張騎行券,其中只有
張是一元券現該用戶從這張騎行券中隨機選取
張轉贈給好友,求選取的
張中至少有
張是一元券的概率.
附:下面的臨界值表僅供參考:
(參考公式: ,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】心理學研究表明,人極易受情緒的影響,某選手參加7局4勝制的兵乒球比賽.
(1)在不受情緒的影響下,該選手每局獲勝的概率為;但實際上,如果前一句獲勝的話,此選手該局獲勝的概率可提升到
;而如果前一局失利的話,此選手該局獲勝的概率則降為
,求該選手在前3局獲勝局數
的分布列及數學期望;
(2)假設選手的三局比賽結果互不影響,且三局比賽獲勝的概率為,記
為銳角
的內角,求證:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且sin2A+sin2B+sin2C=sinAsinB+sinBsinC+sinCsin A.
(1)證明:△ABC是正三角形;
(2)如圖,點D在邊BC的延長線上,且BC=2CD,AD,求sin∠BAD的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com