【題目】在平面角坐標系中,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,將曲線
向左平移
個單位長度得到曲線
.
(1)求曲線的參數方程;
(2)已知為曲線
上的動點,
兩點的極坐標分別為
,求
的最大值.
科目:高中數學 來源: 題型:
【題目】北京時間3月15日下午,谷歌圍棋人工智能與韓國棋手李世石進行最后一輪較量,
獲得本場比賽勝利,最終人機大戰總比分定格
.人機大戰也引發全民對圍棋的關注,某學校社團為調查學生學習圍棋的情況,隨機抽取了100名學生進行調查.根據調查結果繪制的學生日均學習圍棋時間的頻率分布直方圖(如圖所示),將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”.
(Ⅰ)根據已知條件完成下面的列聯表,并據此資料你是否有的把握認為“圍棋迷”與性別有關?
非圍棋迷 | 圍棋迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(Ⅱ)將上述調查所得到的頻率視為概率,現在從該地區大量學生中,采用隨機抽樣方法每次抽取1名學生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數為。若每次抽取的結果是相互獨立的,求
的分布列,期望
和方差
.
附: ,其中
.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(
為參數),在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求的普通方程和
的傾斜角;
(2)設點和
交于
兩點,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(Ⅰ)求曲線在點
處的切線的斜率;
(Ⅱ)判斷方程(
為
的導數)在區間
內的根的個數,說明理由;
(Ⅲ)若函數在區間
內有且只有一個極值點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,且
,
.四邊形
滿足
,
,
.
為側棱
的中點,
為側棱
上的任意一點.
(1)若為
的中點,求證: 面
平面
;
(2)是否存在點,使得直線
與平面
垂直? 若存在,寫出證明過程并求出線段
的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的極坐標方程是
,以極點為平面直角坐標系的原點,極軸為
軸的正半軸,建立平面直角坐標系,直線
的參數方程是
(
為參數).
(1)將曲線的極坐標方程化為直角坐標方程;
(2)若直線與曲線
相交于
兩點,且
,求直線
的傾斜角
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面角坐標系中,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,將曲線
向左平移
個單位長度得到曲線
.
(1)求曲線的參數方程;
(2)已知為曲線
上的動點,
兩點的極坐標分別為
,求
的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com