精英家教網 > 高中數學 > 題目詳情

【題目】(本小題滿分12分)已知橢圓C的離心率為,連接橢圓四個頂點形成的四邊形面積為4

1)求橢圓C的標準方程;

2)過點A1,0)的直線與橢圓C交于點M, N,P為橢圓上一點,且O為坐標原點,當時,求t的取值范圍.

【答案】1;(2

【解析】

試題本題主要考查橢圓的標準方程及其幾何性質、直線與橢圓的位置關系等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,先利用離心率、、四邊形的面積列出方程,解出ab的值,從而得到橢圓的標準方程;第二問,討論直線MN的斜率是否存在,當直線MN的斜率存在時,直線方程與橢圓方程聯立,消參,利用韋達定理,得到,利用列出方程,解出,代入到橢圓上,得到的值,再利用,計算出的范圍,代入到的表達式中,得到t的取值范圍.

試題解析:(1,,即

橢圓C的標準方程為

2)由題意知,當直線MN斜率存在時,

設直線方程為,,

聯立方程消去y,

因為直線與橢圓交于兩點,

所以恒成立,

,

因為點P在橢圓上,所以,

,

,

,整理得:,

化簡得:,解得(舍),

,即

當直線MN的斜率不存在時,,此時,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,.

1)設函數,討論的單調性;

2)設函數,若的圖象與的圖象有,兩個不同的交點,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數

1)若函數上為減函數,求實數的最小值;

2)若存在,使成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某中學為了解中學生的課外閱讀時間,決定在該中學的1200名男生和800名女生中按分層抽樣的方法抽取20名學生,對他們的課外閱讀時間進行問卷調查.現在按課外閱讀時間的情況將學生分成三類:類(不參加課外閱讀),類(參加課外閱讀,但平均每周參加課外閱讀的時間不超過3小時),類(參加課外閱讀,且平均每周參加課外閱讀的時間超過3小時).調查結果如下表:

男生

5

3

女生

3

3

1)求出表中的值;

2)根據表中的統計數據,完成下面的列聯表,并判斷是否有90%的把握認為參加課外閱讀與否與性別有關;

男生

女生

總計

不參加課外閱讀

參加課外閱讀

總計

PKk0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】半正多面體(semiregular solid) 亦稱阿基米德多面體,是由邊數不全相同的正多邊形為面的多面體,體現了數學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】小王想在某市一住宅小區買套新房,據了解,該小區有若干棟互相平行的平頂樓房,每棟樓房有15層,每層樓高為3米,頂樓有1米高的隔熱層,兩樓之間相距60.小王不想買最前面和最后面的樓房,但希望所買樓層全年每天正午都能曬到太陽.為此,小王查找了有關地理資料,獲得如下一些信息:①該市的緯度(地面一點所在球半徑與赤道平面所成的角)為北緯;②正午的太陽直射北回歸線(太陽光線與赤道平面所成的角為)時,物體的影子最短,直射南回歸線(太陽光線與赤道平面所成的角為)時,物體的影子最長,那么小王買房的最低樓層應為(

A.3B.4C.5D.6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求曲線在點處的切線方程;

2)若,求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,已知曲線的參數方程為為參數),以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,直線的極坐標方程為.

1)求曲線的普通方程和直線的直角坐標方程;

2)若射線的極坐標方程為.相交于點,相交于點,求.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的導函數是偶函數,若方程在區間(其中為自然對數的底)上有兩個不相等的實數根,則實數的取值范圍是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视