【題目】給出下列四個命題:
①命題“若,則
”的逆否命題;
②“,使得
”的否定是:“
,均有
”;
③命題“”是“
”的充分不必要條件;
④:
,
:
,
且
為真命題.
其中真命題的序號是________.(填寫所有真命題的序號)
科目:高中數學 來源: 題型:
【題目】選修4—4:坐標系與參數方程
在直角坐標系xOy中,設傾斜角為α的直線l:(t為參數)與曲線C:
(θ為參數)相交于不同的兩點A,B.
(Ⅰ)若α=,求線段AB中點M的坐標;
(Ⅱ)若|PA|·|PB|=|OP|,其中P(2,
),求直線l的斜率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為常數,
,函數
,
(其中
是自然對數的底數).
(1)過坐標原點作曲線
的切線,設切點為
,求證:
;
(2)令,若函數
在區間
上是單調函數,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正六棱錐的底面邊長為
,高為
.現從該棱錐的
個頂點中隨機選取
個點構成三角形,設隨機變量
表示所得三角形的面積.
(1)求概率的值;
(2)求的分布列,并求其數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在,使得
對任意
恒成立,則函數
在
上有下界,其中
為函數
的一個下界;若存在
,使得
對任意
恒成立,則函數
在
上有上界,其中
為函數
的一個上界.如果一個函數既有上界又有下界,那么稱該函數有界.
下述四個結論:①1不是函數的一個下界;②函數
有下界,無上界;③函數
有上界,無下界;④函數
有界.
其中所有正確結論的編號是( )
A.①②B.②④C.③④D.②
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知P是圓上任意一點,F2(1,0),線段PF2的垂直平分線與半徑PF1交于點Q,當點P在圓F1上運動時,記點Q的軌跡為曲線C.
(1)求曲線C的方程;
(2)過點的直線l與(1)中曲線相交于A,B兩點,O為坐標原點,求△AOB面積的最大值及此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知,
,
是橢圓
的三個頂點,橢圓的離心率
,點
到直線
的距離是
.設
是橢圓上位于
軸左邊上的任意一點,直線
,
分別交直線
于
,
兩點,以
為直徑的圓記為
.
(1)求橢圓的方程;
(2)求證:圓始終與圓
:
相切,并求出所有圓
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的準線與x軸的交點為H,點F為拋物線的焦點,點P在拋物線上且
,當k最大時,點P恰好在以H,F為焦點的雙曲線上,則k的最大值為_____,此時該雙曲線的離心率為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com