精英家教網 > 高中數學 > 題目詳情

某學習小組共有7名同學,其中男生n名(2≤n≤5),現從中選出2人參加一項調查活動,若至少有一名女生參加的概率為數學公式,則n=________.

4
分析:本題是一個求概率的問題,考查事件“至少有一名女生參加”其包含的情況較多,需要分類計數,不易計算,而其對立事件“沒有女生”參加相對較簡單,故可采取排除法計數,再求公式求出事件“至少有一名女生參加”發生的概率,利用至少有一名女生參加的概率為建立方程求出n得到答案,
解答:事件“至少有一名女生參加”對立事件是“沒有女生”
總的取法種數是C72=21
事件“沒有女生”所包含的基本事件數是Cn2=
又至少有一名女生參加的概率為
故有1-=,解得n=4
故答案為4
點評:本題考查等可能事件的概率,解題的關鍵是理解事件“至少有一名女生參加”,且能根據事件的性質轉化為它的對立事件求解,理解事件,準確記憶公式以及根據事件的性質選用排除法是解本題的重點,本題難點是對事件“至少有一名女生參加”所包含的基本事件數計數,對立事件是排除法的理論依據,恰當的選用解題的方法可以簡化解題過程,化難為易.本題是一個求值的題,用到了方程的思想建立方程求解
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

高中2010級某數學學習小組共有男生4人,女生3人.
(1)7個人站成一排,甲、乙兩人中間恰好有2人的站法有多少種?
(2)排隊合影,男生甲不站兩邊,女生乙、丙必須相鄰的排法總數為多少?
(3)7人站成一排,甲與乙相鄰且丙與丁不相鄰,有多少種排法?
(4)現有6本不同的數學書,平均分發給三名女生,有多少種分法?
(5)今有10個乒乓球(完全相同)分發給這7名同學,每人至少一個,問有多少種不同的分發?
(6)4名男生互贈不同的紀念品(自己不拿自己的),有多少種不贈送方式?

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•嘉定區一模)某學習小組共有7名同學,其中男生n名(2≤n≤5),現從中選出2人參加一項調查活動,若至少有一名女生參加的概率為
57
,則n=
4
4

查看答案和解析>>

科目:高中數學 來源:嘉定區一模 題型:填空題

某學習小組共有7名同學,其中男生n名(2≤n≤5),現從中選出2人參加一項調查活動,若至少有一名女生參加的概率為
5
7
,則n=______.

查看答案和解析>>

科目:高中數學 來源:2008年上海市嘉定區高考數學一模試卷(文理合卷)(解析版) 題型:解答題

某學習小組共有7名同學,其中男生n名(2≤n≤5),現從中選出2人參加一項調查活動,若至少有一名女生參加的概率為,則n=   

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视