【題目】已知橢圓:
(
)過點
,且橢圓
的離心率為
.
(1)求橢圓的方程;
(2)若動點在直線
上,過
作直線交橢圓
于
兩點,且
為線段
中點,再過
作直線
.求直線
是否恒過定點,如果是則求出該定點的坐標,不是請說明理由。
【答案】(1);(2)直線
恒過定點
.
【解析】試題分析:本題主要考查橢圓的標準方程以及幾何性質、直線的標準方程、直線與橢圓的位置關系、韋達定理等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,利用點在橢圓上和離心率得到方程組,解出a和b的值,從而得到橢圓的標準方程;第二問,需要對直線MN的斜率是否存在進行討論,(ⅰ)若存在點P在MN上,設出直線MN的方程,由于直線MN與橢圓相交,所以兩方程聯立,得到兩根之和,結合中點坐標公式,得到直線MN的斜率,由于直線MN與直線垂直,從而得到直線
的斜率,因為直線
也過點P,寫出直線
的方程,經過整理,即可求出定點,(ⅱ)若直線MN的斜率不存在,則直線MN即為
,而直線
為x軸,經驗證直線
,也過上述定點,所以綜上所述,有定點.
(1)因為點在橢圓
上,所以
, 所以
, 1分
因為橢圓的離心率為
,所以
,即
, 2分
解得, 所以橢圓
的方程為
. 4分
(2)設,
,
①當直線的斜率存在時,設直線
的方程為
,
,
,
由得
,
所以, 因為
為
中點,所以
,即
.
所以, 8分
因為直線,所以
,所以直線
的方程為
,
即,顯然直線
恒過定點
. 10分
②當直線的斜率不存在時,直線
的方程為
,此時直線
為
軸,也過點
.
綜上所述直線恒過定點
. 12分
科目:高中數學 來源: 題型:
【題目】已知f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求函數f(x)在[t,t+2](t>0)上的最小值;
(2)對一切x∈(0,+∞),2f(x)≥g(x)恒成立,求實數a的取值范圍;
(3)證明:對一切x∈(0,+∞),都有lnx> ﹣
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線方程為x2=2py(p>0),其焦點為F,點O為坐標原點,過焦點F作斜率為k(k≠0)的直線與拋物線交于A,B兩點,過A,B兩點分別作拋物線的兩條切線,設兩條切線交于點M.
(1)求 ;
(2)設直線MF與拋物線交于C,D兩點,且四邊形ACBD的面積為 ,求直線AB的斜率k.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】ABCD為正方形,P為平面ABCD外一點,且PA⊥平面ABCD,則平面PAB與平面PBC,平面PAB與平面PAD的位置關系是( )
A.平面PAB與平面PAD,PBC垂直
B.它們都分別相交且互相垂直
C.平面PAB與平面PAD垂直,與平面PBC相交但不垂直
D.平面PAB與平面PBC垂直,與平面PAD相交但不垂直
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓:
的離心率為
,
為橢圓
的右焦點,
,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設為原點,
為橢圓上一點,
的中點為
,直線
與直線
交于點
,過
作
,交直線
于點
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com