【題目】對于給定的正整數k,若數列lanl 滿足
=2kan對任意正整數n(n> k) 總成立,則稱數列lanl 是“P(k)數列”.學科@網
(1)證明:等差數列lanl是“P(3)數列”;
若數列lanl既是“P(2)數列”,又是“P(3)數列”,證明:lanl是等差數列.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(I)寫出直線的一般方程與曲線
的直角坐標方程,并判斷它們的位置關系;
(II)將曲線向左平移
個單位長度,向上平移
個單位長度,得到曲線
,設曲線
經過伸縮變換
得到曲線
,設曲線
上任一點為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《孫子算經》是中國古代重要的數學著作,約成書于四、五世紀,也就是大約一千五百年前,傳本的《孫子算經》共三卷,卷中有一問題:“今有方物一束,外周一匝有三十二枚,問積幾何?”該著作中提出了一種解決問題的方法:“重置二位,左位減八,余加右位,至盡虛加一,即得.”通過對該題的研究發現,若一束方物外周一匝的枚數是8的整數倍時,均可采用此方法求解,如圖,是解決這類問題的程序框圖,若輸入
,則輸出的結果為( )
A. 120 B. 121 C. 112 D. 113
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}滿足:a4=7,a10=19,其前n項和為Sn .
(1)求數列{an}的通項公式an及Sn;
(2)若等比數列{bn}的前n項和為Tn , 且b1=2,b4=S4 , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=4,BC=3,點D在線段AC上,且AD=4DC.
(Ⅰ)求BD的長;
(Ⅱ)求sin∠CBD的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面內給定三個向量 =(3,2),
=(﹣1,2),
=(4,1).回答下列問題:
(1)若( +k
)∥(2
﹣
),求實數k;
(2)設 =(x,y)滿足(
﹣
)∥(
+
)且|
﹣
|=1,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某班同學利用寒假進行社會實踐活動,對[25,55]歲的人群隨機抽取n人進行了一次生活習慣是否符合低碳觀念的調查,若生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,得到如下統計表和各年齡段人數頻率分布直方圖:
組數 | 分組 | 低碳族人數 | 占本組的頻率 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55) | 15 | 0.3 |
(1)補全頻率分布直方圖并求n、a、p的值;
(2)從年齡段在[40,50)的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗活動,其中選取2人作為領隊,求選取的2名領隊中恰有1人年齡在[40,45)歲的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等邊三角形的邊長為4,四邊形
為正方形,平面
平面
,
,
,
,
分別是線段
,
,
,
上的點.
(Ⅰ)如圖①,若為線段
的中點,
,證明:
平面
;
(Ⅱ)如圖②,若,
分別為線段
,
的中點,
,
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣4x﹣4y+4=0,點E(3,4).
(1)過點E的直線l與圓交與A,B兩點,若AB=2 ,求直線l的方程;
(2)從圓C外一點P(x1 , y1)向該圓引一條切線,切點記為M,O為坐標原點,且滿足PM=PO,求使得PM取得最小值時點P的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com