精英家教網 > 高中數學 > 題目詳情

【題目】平面內給定三個向量 =(3,2), =(﹣1,2), =(4,1).回答下列問題:
(1)若( +k )∥(2 ),求實數k;
(2)設 =(x,y)滿足( )∥( + )且| |=1,求

【答案】
(1)解:∵( +k )∥(2 ),

+k =(3+4k,2+k),2 =(﹣5,2),

∴2×(3+4k)﹣(﹣5)×(2+k)=0,∴k=﹣


(2)解:∵ =(x﹣4,y﹣1), + =(2,4),

又( )∥( + )且| =1,

,解得

=( , ),或 =( ,


【解析】(1)利用兩個向量共線的條件x1y2﹣x2y1=0.(2)利用兩個向量共線的條件x1y2﹣x2y1=0 及| |=1,解出向量 的坐標.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知長方形ABCD中,AB=2,AD=1,M為DC的中點.將△ADM沿AM折起,使得平面ADM⊥平面ABCM,E為BD的中點.
(1)求證:BM⊥平面ADM;
(2)求直線AE與平面ADM所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】不等式ax2+bx+c>0的解集為{x|﹣1<x<2},則不等式a(x2+1)+b(x﹣1)+c>2ax的解集為(
A.{x|0<x<3}
B.{x|x<0或x>3}
C.{x|﹣2<x<1}
D.{x|x<﹣2或x>1}

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐A-BCD中,ABAD,BCBD,平面ABD平面BCD,點E、F(E與A、D不重合)分別在棱AD,BD上,且EFAD.

求證:(1)EF平面ABC;

(2)ADAC.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于給定的正整數k,若數列lanl 滿足

=2kan對任意正整數n(n> k) 總成立,則稱數列lanl 是“P(k)數列.學科@

(1)證明:等差數列lanl是“P(3)數列”;

若數列lanl既是“P(2)數列”,又是“P(3)數列”,證明:lanl是等差數列.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正四面體ABCD中, 的中心, 分別是上的動點,且

(1)若平面,求實數的值;

(2)若,正四面體ABCD的棱長為,求平面和平面所成的角余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發展,國內企業的國際競爭力得到大幅提升.伴隨著國內市場增速放緩,國內有實力企業紛紛進行海外布局,第二輪企業出海潮到來.如在智能手機行業,國產品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設30多個分支機構,需要國內公司外派大量70后、80后中青年員工.該企業為了解這兩個年齡層員工是否愿意被外派工作的態度,按分層抽樣的方式從70后和80后的員工中隨機調查了100位,得到數據如下表:

愿意被外派

不愿意被外派

合計

70后

20

20

40

80后

40

20

60

合計

60

40

100

(Ⅰ)根據調查的數據,是否有90%以上的把握認為“是否愿意被外派與年齡有關”,并說明理由;

(Ⅱ)該公司舉行參觀駐海外分支機構的交流體驗活動,擬安排4名參與調查的70后員工參加.70后員工中有愿意被外派的3人和不愿意被外派的3人報名參加,現采用隨機抽樣方法從報名的員工中選4人,求選到愿意被外派人數不少于不愿意被外派人數的概率.

參考數據:

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

(參考公式: ,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線C的焦點與橢圓 =1的焦點相同,且漸近線方程為y=± x.
(1)求雙曲線C的標準方程;
(2)設F1為雙曲線的左焦點,P為雙曲線C的右支上一點,且線段PF1的中點在y軸上,求△PF1F2的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 =(1,2), =(﹣3,2),當k為何值時:
(1)k + ﹣3 垂直;
(2)k + ﹣3 平行,平行時它們是同向還是反向?

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视