【題目】橢圓 (a>b>0)與直線x+y=1交于P、Q兩點,且OP⊥OQ,其中O為坐標原點.
(1)求 的值;
(2)若橢圓的離心率e滿足 ≤e≤
,求橢圓長軸的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖是由正整數構成的數表,用aij表示i行第j個數(i,j∈N+).此表中ail=aii=i,每行中除首尾兩數外,其他各數分別等于其“肩膀”上的兩數之和.
(1)寫出數表的第六行(從左至右依次列出).
(2)設第n行的第二個數為bn(n≥2),求bn.
(3)令,記Tn為數列
前n項和,求
的最大值,并求此時n的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下表是一位母親給兒子作的成長記錄:
年齡/周歲 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
根據以上樣本數據,她建立了身高 (cm)與年齡x(周歲)的線性回歸方程為
,給出下列結論:
①y與x具有正的線性相關關系;
②回歸直線過樣本的中心點(42,117.1);
③兒子10歲時的身高是 cm;
④兒子年齡增加1周歲,身高約增加 cm.
其中,正確結論的個數是
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓 =1(a>b>0),F1 , F2分別為橢圓的左、右焦點,A為橢圓的上頂點,直線AF2交橢圓于另一點B.
(1)若∠F1AB=90°,求橢圓的離心率;
(2)若橢圓的焦距為2,且 =2
,求橢圓的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等比數列{an}的前n項和為Sn=a2n+b,且a1=3.
(1)求a、b的值及數列{an}的通項公式;
(2)設bn= ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某小朋友按如下規則練習數數,大拇指,
食指,
中指,
無名指,
小指,
無名指,
中指,
食指,
大拇指,
食指,
,一直數到
時,對應的指頭是( )
A. 小指 B. 中指 C. 食指 D. 無名指
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)當時,
恒成立,求實數m的取值范圍;
(2)是否存在整數a、b(其中a、b是常數,且a<b),使得關于x的不等式的解集為
?若存在,求出a、b的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com