【題目】已知平面直角坐標系,直線
過點
,且傾斜角為
,以
為極點,
軸的非負半軸為極軸建立極坐標系,圓
的極坐標方程為
.
(1)求直線的參數方程和圓
的標準方程;
(2)設直線與圓
交于
、
兩點,若
,求直線
的傾斜角
的值.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2xlnx﹣x2.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程
(2)若方程f′(x)=a在[,+∞)有且僅有兩個實根(其中f′(x)為f(x)的導函數,e為自然對數的底),求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=4alnx﹣3x,且不等式f(x+1)≥4ax﹣3ex,在(0,+∞)上恒成立,則實數a的取值范圍( )
A.B.
C.(﹣∞,0)D.(﹣∞,0]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
(其中a是常數).
(1)求過點與曲線
相切的直線方程;
(2)是否存在的實數,使得只有唯一的正數a,當
時不等式
恒成立,若這樣的實數k存在,試求k,a的值;若不存在.請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在(0,+∞)上的可導函數,滿足f(1)=2,且,則不等式f(x)﹣e3﹣3x>1的解集為( 。
A.(0,1)B.(0,e)C.(1,+∞)D.(e,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P-ABCD中,底面ABCD為矩形,平面PAB⊥平面ABCD,AB=AP=3,AD=PB=2,E為線段AB上一點,且AE︰EB=7︰2,點F、G分別為線段PA、PD的中點.
(1)求證:PE⊥平面ABCD;
(2)若平面EFG將四棱錐P-ABCD分成左右兩部分,求這兩部分的體積之比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E為PD的中點,點F在PC上,且.
(Ⅰ)求證:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)設點G在PB上,且.判斷直線AG是否在平面AEF內,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com