【題目】某公交公司為了方便市民出行,科學規劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發車間隔時間x與乘客等候人數y之間的關系,經過調查得到如下數據:
間隔時間x/分 | 10 | 11 | 12 | 13 | 14 | 15 |
等候人數y/人 | 23 | 25 | 26 | 29 | 28 | 31 |
調查小組先從這6組數據中選取4組數據求線性回歸方程,再用剩下的2組數據進行檢驗.檢驗方法如下:先用求得的線性回歸方程計算間隔時間對應的等候人數,再求
與實際等候人數y的差,若差值的絕對值都不超過1,則稱所求方程是“恰當回歸方程”.
(1)從這6組數據中隨機選取4組數據,求剩下的2組數據的間隔時間相鄰的概率;
(2)若選取的是中間4組數據,求y關于x的線性回歸方程,并判斷此方程是否是“恰當回歸方程”.
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
科目:高中數學 來源: 題型:
【題目】[選修4-4:坐標系與參數方程]
已知曲線的極坐標方程為
,以極點
為直角坐標原點,以極軸為
軸的正半軸建立平面直角坐標系
,將曲線
向左平移
個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的
,縱坐標保持不變,得到曲線
(1)求曲線的直角坐標方程;
(2)已知直線的參數方程為
,(
為參數),點
為曲線
上的動點,求點
到直線
距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某海面上有、
、
三個小島(面積大小忽略不計),
島在
島的北偏東
方向距
島
千米處,
島在
島的正東方向距
島20千米處.以
為坐標原點,
的正東方向為
軸的正方向,1千米為單位長度,建立平面直角坐標系.圓
經過
、
、
三點.
(1)求圓的方程;
(2)若圓區域內有未知暗礁,現有一船D在
島的南偏西30°方向距
島40千米處,正沿著北偏東
行駛,若不改變方向,試問該船有沒有觸礁的危險?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,,
,
,
,
分別為
,
邊的中點,以
為折痕把
折起,使點
到達點
的位置,且
..
(Ⅰ)證明:平面
;
(Ⅱ)設為線段
上動點,求直線
與平面
所成角的正弦值的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)討論的單調性;
(2)若有兩個極值點
和
,記過點
,
的直線的斜率為k,問:是否存在m,使得
?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】教材曾有介紹:圓上的點
處的切線方程為
。我們將其結論推廣:橢圓
上的點
處的切線方程為
,在解本題時可以直接應用。已知,直線
與橢圓
有且只有一個公共點.
(1)求的值;
(2)設為坐標原點,過橢圓
上的兩點
、
分別作該橢圓的兩條切線
、
,且
與
交于點
。當
變化時,求
面積的最大值;
(3)在(2)的條件下,經過點作直線
與該橢圓
交于
、
兩點,在線段
上存在點
,使
成立,試問:點
是否在直線
上,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某書店剛剛上市了《中國古代數學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價
(元)與銷量
(冊)數據:
單價 | 18 | 19 | 20 | 21 | 22 |
銷量 | 61 | 56 | 50 | 48 | 45 |
(l)根據表中數據,請建立關于
的回歸直線方程:
(2)預計今后的銷售中,銷量(冊)與單價
(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?
附:,
,
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com