【題目】已知實數a>0,集合 ,集合B={x||2x﹣1|>5}.
(1)求集合A、B;
(2)若A∩B≠,求a的取值范圍.
【答案】
(1)解:a>0時,集合 ={x|﹣1<x<a},
集合B={x||2x﹣1|>5}={x|2x﹣1>5或2x﹣1<﹣5}
={x|x>3或x<﹣2};
(2)解:當A∩B≠時,a>3,
∴a的取值范圍是a>3
【解析】本題考查的是集合的概念以及不等式的解法,尤其是線性不等式的等價變形。
【考點精析】認真審題,首先需要了解集合的表示方法-特定字母法(①自然語言法:用文字敘述的形式來描述集合.②列舉法:把集合中的元素一一列舉出來,寫在大括號內表示集合.③描述法:{|
具有的性質},其中
為集合的代表元素.④圖示法:用數軸或韋恩圖來表示集合),還要掌握集合的交集運算(交集的性質:(1)A∩B
A,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,則A
B,反之也成立)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lnx,則函數g(x)=f(x)﹣f′(x)的零點所在的區間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=( +
)x3(a>0且a≠1).
(1)求函數f(x)的定義域;
(2)討論函數f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知關于x的方程x2+2mx+2m+1=0(m∈R).
(1)若方程有兩實根,其中一根在區間(﹣1,1)內,另一根在區間(1,2)內,求m的取值范圍;
(2)若方程兩實根均在區間(﹣1,2)內,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)(x>0)的導函數為f′(x),若xf′(x)+f(x)=ex , 且f(1)=e,則( )
A.f(x)的最小值為e??
B.f(x)的最大值為e
C.f(x)的最小值為 ??
D.f(x)的最大值為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知不等式x2+mx+3≤0的解集為A=[1,n],集合B={x|x2﹣ax+a≤0}.
(1)求m﹣n的值;
(2)若A∪B=A,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設x取實數,則f(x)與g(x)表示同一個函數的是( )
A.f(x)=x,g(x)=
B.f(x)= ,g(x)=
C.f(x)=1,g(x)=(x﹣1)0
D.f(x)= ,g(x)=x﹣3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com