【題目】設函數 (a∈R,e為自然對數的底數),若曲線y=sinx上存在點(x0 , y0)使得f(f(y0))=y0 , 則a的取值范圍是( )
A.[1,e]
B.[e﹣1﹣1,1]
C.[1,e+1]
D.[e﹣1﹣1,e+1]
【答案】A
【解析】解:曲線y=sinx上存在點(x0 , y0)使得f(f(y0))=y0 , 則y0∈[﹣1,1]
考查四個選項,B,D兩個選項中參數值都可取0,C,D兩個選項中參數都可取e+1,A,B,C,D四個選項參數都可取1,由此可先驗證參數為0與e+1時是否符合題意,即可得出正確選項
當a=0時, ,此是一個增函數,且函數值恒非負,故只研究y0∈[0,1]時f(f(y0))=y0是否成立
由于 是一個增函數,可得出f(y0)≥f(0)=1,而f(1)=
>1,故a=0不合題意,由此知B,D兩個選項不正確
當a=e+1時, 此函數是一個增函數,
=0,而f(0)沒有意義,故a=e+1不合題意,故C,D兩個選項不正確
綜上討論知,可確定B,C,D三個選項不正確,故A選項正確
故選A
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱柱中,
為正方形,
是菱形,平面
平面
.
(1)求證:平面
;
(2)求證:
;
(3)設點E,F,H,G分別是的中點,試判斷
四點是否共面,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知奇函數f(x)=a(a為常數).
(1)求a的值;
(2)若函數g(x)=|(2x+1)f(x)|﹣k有2個零點,求實數k的取值范圍;
(3)若x∈[﹣2,﹣1]時,不等式f(x)恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=x2+bx+c有兩個零點1和﹣1.
(1)求f(x)的解析式;
(2)設g(x),試判斷函數g(x)在區間(﹣1,1)上的單調性并用定義證明;
(3)由(2)函數g(x)在區間(﹣1,1)上,若實數t滿足g(t﹣1)﹣g(﹣t)>0,求t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且2cos2 cosB﹣sin(A﹣B)sinB+cos(A+C)=﹣
.
(1)求cosA的值;
(2)若a=4 ,b=5,求向量
在
方向上的投影.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F分別是C1D1,CC1的中點,則異面直線AE與BF所成角的余弦值為( 。
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設z1 , z2是復數,則下列命題中的假命題是( )
A.若|z1﹣z2|=0,則 =
B.若z1= ,則
=z2
C.若|z1|=|z2|,則z1? =z2?
D.若|z1|=|z2|,則z12=z22
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com