【題目】設函數f(x)=|ax﹣x2|+2b(a,b∈R).
(1)當a=﹣2,b=﹣ 時,解方程f(2x)=0;
(2)當b=0時,若不等式f(x)≤2x在x∈[0,2]上恒成立,求實數a的取值范圍;
(3)若a為常數,且函數f(x)在區間[0,2]上存在零點,求實數b的取值范圍.
【答案】
(1)解:當a=﹣2,b=﹣ 時,f(x)=|x2+2x|﹣15,所以方程即為:|2x(2x+2)|=15
解得:2x=3或2x=﹣5(舍),所以x=
(2)解:當b=0時,若不等式:x|a﹣x|≤2x
在x∈[0,2]上恒成立;
當x=0時,不等式恒成立,則a∈R;
當0<x≤2時,則|a﹣x|≤2,
在[0,22]上恒成立,即﹣2≤x﹣a≤2在(0,2]上恒成立,
因為y=x﹣a在(0,2]上單調增,ymax=2﹣a,ymin=﹣a,則 ,解得:0≤a≤2;
則實數a的取值范圍為[0.2]
(3)解:函數f(x)在[0,2]上存在零點,即方程x|a﹣x|=﹣2b在[0,2]上有解;
設h(x)=
當a≤0時,則h(x)=x2﹣ax,x∈[0,2],且h(x)在[0,2]上單調增,
所以h(x)min=h(0)=0,h(x)max=h(2)=4﹣2a,
則當 0≤﹣2b≤4﹣2a時,原方程有解,則a﹣2≤b≤0;
當a>0時,h(x)= ,
h(x)在[0, ]上單調增,在[
]上單調減,在[a,+∞)上單調增;
①當 ,即a≥4時,h(x)min=h(0)=0,h(x)max=h(2)=4﹣2a,
則當則當0≤﹣2b≤2a﹣4時,原方程有解,則2﹣a≤b≤0;
②當 ,即2≤a<4時,h(x)min=h(0)=0,h(x)max=h(
)=
,
則當0≤﹣2b≤ 時,原方程有解,則﹣
;
③當0<a<2時,h(x)min=h(0)=0,h(x)max=max{h(2),h( )=max{4﹣2a,
}
當 ,即當﹣4+4
≤a<2時,h(x)max=
,則當0≤﹣2b≤ 時,原方程有解,則
;
當 ,即則0
時,h(x)max=4﹣2a,
則當0≤﹣2b≤4﹣2a時,原方程有解,則a﹣2≤b≤0;
綜上,當0<a<﹣4+4 時,實數b的取值范圍為[a﹣2,0];
當﹣4+4 ≤a<4時,實數b的取值范圍為[
];
當a≥4時,實數b的取值范圍為[2﹣a,0]
【解析】(1)解:(1)原方程即為:|2x(2x+2)|=15,解得2x即可,(2)不等式f(x)≤2x在x∈[0,2]上恒成立,及(f(x)﹣2x)max≤在x∈[0,2]上恒成立即可‘(3)函數f(x)在[0,2]上存在零點,即方程x|a﹣x|=﹣2b在[0,2]上有解,分類求出設h(x)= 的值域即可.
科目:高中數學 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,AB=2,點E是BC的中點.
(1)求線段DE的長;
(2)求直線A1E與平面ADD1A1所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,當x>0時,f(x)=log2( +a).
(1)若函數f(x)過點(1,1),求此時函數f(x)的解析式;
(2)若函數g(x)=f(x)+2log2x只有一個零點,求實數a的范圍;
(3)設a>0,若對任意實數t∈[ ,1],函數f(x)在[t,t+1]上的最大值與最小值的差不大于1,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知:θ為第一象限角, =(sin(θ﹣π),1),
=(sin(
﹣θ),﹣
),
(1)若 ∥
,求
的值;
(2)若| +
|=1,求sinθ+cosθ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (e為自然對數的底數,e=2.71828…).
(1)證明:函數f(x)為奇函數;
(2)判斷并證明函數f(x)的單調性,再根據結論確定f(m2﹣m+1)+f(﹣ )與0的大小關系;
(3)是否存在實數k,使得函數f(x)在定義域[a,b]上的值域為[kea , keb].若存在,求出實數k的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線l的方程為(a+1)x+y+2﹣a=0(a∈R).
(1)若直線l在兩坐標軸上的截距相等,求直線l的方程;
(2)若直線l不經過第二象限,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(m,﹣1),
=(
)
(1)若m=﹣ ,求
與
的夾角θ;
(2)設 . ①求實數m的值;
②若存在非零實數k,t,使得[ +(t2﹣3)
]⊥(﹣k
+t
),求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知t為實數,函數f(x)=2loga(2x+t﹣2),g(x)=logax,其中0<a<1.
(1)若函數y=g(ax+1)﹣kx是偶函數,求實數k的值;
(2)當x∈[1,4]時,f(x)的圖象始終在g(x)的圖象的下方,求t的取值范圍;
(3)設t=4,當x∈[m,n]時,函數y=|f(x)|的值域為[0,2],若n﹣m的最小值為 ,求實數a的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com