【題目】如圖,在四棱錐中,
,
,
的中點是
,
面
,
,
,
(1)求異面直線與
所成角的大;
(2)求面與平面
所成二面角的大小.
科目:高中數學 來源: 題型:
【題目】已知函數,其圖象關于直線
對稱,為了得到函數
的圖象,只需將函數
的圖象上的所有點( )
A.先向左平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變
B.先向右平移個單位長度,再把所得各點橫坐標縮短為原來的
,縱坐標保持不變
C.先向右平移個單位長度,再把所得各點橫坐標伸長為原來的2倍,縱坐標保持不變
D.先向左平移個單位長度,再把所得各點橫坐標縮短為原來的
,縱坐標保持不變
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知圓:
(
)和雙曲線
:
(
),記
與
軸正半軸、
軸負半軸的公共點分別為
、
,又記
與
在第一、第四象限的公共點分別為
、
.
(1)若,且
恰為
的左焦點,求
的兩條漸近線的方程;
(2)若,且
,求實數
的值;
(3)若恰為
的左焦點,求證:在
軸上不存在這樣的點
,使得
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地擬建造一座體育館,其設計方案側面的外輪廓線如圖所示:曲線是以點
為圓心的圓的一部分,其中
,
是圓的切線,且
,曲線
是拋物線
的一部分,
,且
恰好等于圓
的半徑.
(1)若米,
米,求
與
的值;
(2)若體育館側面的最大寬度不超過75米,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,B是AC的中點,,P是平行四邊形BCDE內(含邊界)的一點,且
.有以下結論:
①當x=0時,y∈[2,3];
②當P是線段CE的中點時,;
③若x+y為定值1,則在平面直角坐標系中,點P的軌跡是一條線段;
④x﹣y的最大值為﹣1;
其中你認為正確的所有結論的序號為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在與正實數
,使得
成立,則稱函數
在
處存在距離為
的對稱點,把具有這一性質的函數
稱之為“
型函數”.
(1)設,試問
是否是“
型函數”?若是,求出實數
的值;若不是,請說明理由;
(2)設對于任意
都是“
型函數”,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,直線平面
,四邊形
是正方形,且
,點
,
,
分別是線段
,
,
的中點.
(1)求異面直線與
所成角的大小(結果用反三角表示);
(2)在線段上是否存在一點
,使
,若存在,求出
的長,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com