【題目】若存在與正實數
,使得
成立,則稱函數
在
處存在距離為
的對稱點,把具有這一性質的函數
稱之為“
型函數”.
(1)設,試問
是否是“
型函數”?若是,求出實數
的值;若不是,請說明理由;
(2)設對于任意
都是“
型函數”,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】定義:若數列滿足,存在實數
,對任意
,都有
,則稱數列
有上界,
是數列
的一個上界,已知定理:單調遞增有上界的數列收斂(即極限存在).
(1)數列是否存在上界?若存在,試求其所有上界中的最小值;若不存在,請說明理由;
(2)若非負數列滿足
,
(
),求證:1是非負數列
的一個上界,且數列
的極限存在,并求其極限;
(3)若正項遞增數列無上界,證明:存在
,當
時,恒有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD⊥平面PAB.
(1)求證:AB⊥平面PCB;
(2)求二面角C﹣PA﹣B的大小的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,以橢圓(
)的右焦點
為圓心,
為半徑作圓
(其中
為已知橢圓的半焦距),過橢圓上一點
作此圓的切線,切點為
.
(1)若,
為橢圓的右頂點,求切線長
;
(2)設圓與
軸的右交點為
,過點
作斜率為
(
)的直線
與橢圓相交于
、
兩點,若
恒成立,且
.求:
(。的取值范圍;
(ⅱ)直線被圓
所截得弦長的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若滿足
為
上奇函數且
為
上偶函數,求
的值;
(2)若函數滿足
對
恒成立,函數
,求證:函數
是周期函數,并寫出
的一個正周期;
(3)對于函數,
,若
對
恒成立,則稱函數
是“廣義周期函數”,
是其一個廣義周期,若二次函數
的廣義周期為
(
不恒成立),試利用廣義周期函數定義證明:對任意的
,
,
成立的充要條件是
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《上海市生活垃圾管理條例》于2019年7月1日正式實施,某小區全面實施垃圾分類處理,已知該小區每月垃圾分類處理量不超過300噸,每月垃圾分類處理成本(元)與每月分類處理量
(噸)之間的函數關系式可近似表示為
,而分類處理一噸垃圾小區也可以獲得300元的收益.
(1)該小區每月分類處理多少噸垃圾,才能使得每噸垃圾分類處理的平均成本最低;
(2)要保證該小區每月的垃圾分類處理不虧損,每月的垃圾分類處理量應控制在什么范圍?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】張軍自主創業,在網上經營一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價格依次為120元/千克、80元/千克、70元/千克、40元千克,為增加銷量,張軍對這四種干果進行促銷:一次購買干果的總價達到150元,顧客就少付x(2x∈Z)元.每筆訂單顧客網上支付成功后,張軍會得到支付款的80%.
①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;
②在促銷活動中,為保證張軍每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com