【題目】已知函數f(x)= sin2x+cos2x.
(1)當x∈[0, ]時,求f(x)的取值范圍;
(2)求函數y=f(x)的單調遞增區間.
【答案】
(1)解:函數f(x)= sin2x+cos2x=2sin(2x+
),
∵x∈[0, ],∴
,
當2x+ =
時,f(x)min=f(0)=2sin
=1,
當2x+ =
時,f(x)max=f(
)=2sin
=2.
∴f(x)的取值范圍[1,2]
(2)解:∵f(x)=2sin(2x+ ),
∴函數y=f(x)的單調遞增區間滿足條件:
﹣ ,k∈Z,
解得kπ﹣ ≤x≤
,k∈Z,
∴函數y=f(x)的單調遞增區間為[ ,k
].k∈Z
【解析】(1)函數f(x)= sin2x+cos2x=2sin(2x+
),由x∈[0,
],得
,由此能求出f(x)的取值范圍.(2)由f(x)=2sin(2x+
),得函數y=f(x)的單調遞增區間滿足條件﹣
,k∈Z,由此能求出函數y=f(x)的單調遞增區間.
科目:高中數學 來源: 題型:
【題目】若函數f(x)滿足下列條件:在定義域內存在x0 , 使得f(x0+1)=f(x0)+f(1)成立,則稱函數f(x)具有性質M;反之,若x0不存在,則稱函數f(x)不具有性質M.
(1)證明:函數f(x)=2x具有性質M,并求出對應的x0的值;
(2)已知函數 具有性質M,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ex(x2+x+a)在(0,f(0))處的切線與直線2x﹣y﹣3=0平行,其中a∈R.
(1)求a的值;
(2)求函數f(x)在區間[﹣2,2]上的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為了對一種新產品進行合理定價,將該產品按亊先擬定的價格進行試銷,得到如下數據:
單價x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
銷量V(件) | 90 | 84 | 83 | 80 | 75 | 68 |
由表中數據.求得線性回歸方程為 =﹣4x+a.若在這些樣本點中任取一點,則它在回歸直線右上方的概率為
( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在銳角△ABC中,a,b,c分別是三個內角A,B,C的對邊,若2asinB= b. (Ⅰ)求A;
(Ⅱ)若a= ,△ABC的面積為
,求△ABC的周長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cos2x的圖象向左平移 個單位后得到函數g(x)的圖象,若使|f(x1)﹣g(x2)|=2成立x1 , x2的滿足
,則φ的值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com