【題目】已知命題p:方程 =1所表示的圖形是焦點在y軸上的雙曲線,命題q:復數z=(m﹣3)+(m﹣1)i對應的點在第二象限,又p或q為真,p且q為假,求實數m的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0)的離心率為
,短軸長為
,過右焦點F的直線l與C相交于A,B兩點.O為坐標原點.
(1)求橢圓C的方程;
(2)若點P在橢圓C上,且 =
+
,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數y=f(x)的定義域為D,若對于任意x1、x2∈D,當x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數y=f(x)圖象的對稱中心.研究函數f(x)=x+sinπx﹣3的某一個對稱中心,并利用對稱中心的上述定義,可得到f( )+f(
)+…+f(
)+f(
)的值為( )
A.4027
B.﹣4027
C.8054
D.﹣8054
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國上是世界嚴重缺水的國家,城市缺水問題較為突出,某市政府為了鼓勵居民節約用水,計劃在本市試行居民生活用水定額管理,即確定一個合理的居民月用水量標準(噸),用水量不超過
的部分按平價收費,超過
的部分按議價收費,為了了解全市民月用水量的分布情況,通過抽樣,獲得了100位居民某年的月用水量(單位:噸),將數據按照
,
,…,
分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中 的值;
(Ⅱ)已知該市有80萬居民,估計全市居民中月均用水量不低于3噸的人數,并說明理由;
(Ⅲ)若該市政府希望使的居民每月的用水量不超過標準
(噸),估計
的值,并說明理由;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于定義域為的函數
,如果存在區間
(
),同時滿足:
①在
內是單調函數;②當定義域是
時,
的值域也是
.
則稱函數是區間
上的“保值函數”.
(1)求證:函數不是定義域
上的“保值函數”;
(2)已知(
)是區間
上的“保值函數”,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax﹣1(x≥0)的圖象經過點(2, ),其中a>0,a≠1.
(1)求a的值;
(2)求函數f(x)=a2x﹣ax﹣2+8,x∈[﹣2,1]的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com