【題目】在直角坐標系中,曲線
的參數方程為
為參數),若以直角坐標系中的原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
為參數).
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)若曲線與曲線
有公共點,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】【選修4-4:坐標系與參數方程】
在平面直角坐標系中,曲線
的參數方程為:
(
為參數,
),將曲線
經過伸縮變換:
得到曲線
.
(1)以原點為極點, 軸的正半軸為極軸建立坐標系,求
的極坐標方程;
(2)若直線(
為參數)與
相交于
兩點,且
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設集合,如果對于
的每一個含有
個元素的子集
,
中必有
個元素的和等于
,稱正整數
為集合
的一個“相關數”
(1)當時,判斷
和
是否為集合
的“相關數”,說明理由;
(2)若為集合
的“相關數”,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,幾何體EF-ABCD中,四邊形CDEF是正方形,四邊形ABCD為直角梯形,AB∥CD,AD⊥DC,△ACB是腰長為2的等腰直角三角形,平面CDEF⊥平面ABCD.
(1)求證:BC⊥AF;
(2)求幾何體EF-ABCD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某籃球隊對籃球運動員的籃球技能進行統計研究,針對籃球運動員在投籃命中時,運動員到籃筐中心的水平距離這項指標,對某運動員進行了若干場次的統計,依據統計結果繪制如下頻率分布直方圖:
(I)依據頻率分布直方圖估算該運動員投籃命中時,他到籃筐中心的水平距離的中位數;
(II)在某場比賽中,考察他前4次投籃命中時到籃筐中心的水平距離的情況,并且規定:運動員投籃命中時,他到籃筐中心的水平距離不少于4米的記1分,否則扣掉1分.用隨機變量X表示第4次投籃后的總分,將頻率視為概率,求X的分布列和均值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com