【題目】若x4(x+4)8=a0+a1(x+3)+a2(x+3)2+…+a12(x+3)12,則log2(a1+a3+…+a11)=( ).
A. 4B. 8C. 12D. 11
科目:高中數學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為.
(1)請將上面的列聯表補充完整;
(2)是否有99%的把握認為“喜愛打籃球與性別有關”?說明你的理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經成為人們越來越關注的話題,為了解公眾對“延遲退休”的態度,某校課外研究性學習小組在某社區隨機抽取了50人進行調查,將調查情況進行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數 | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數 | 6 | 7 | 3 | 5 | 4 |
經調查年齡在[25,30),[55,60)的被調查者中贊成“延遲退休”的人數分別是3人和2人.現從這兩組的被調查者中各隨機選取2人,進行跟蹤調查.
(I)求年齡在[25,30)的被調查者中選取的2人都贊成“延遲退休”的概率;
(II)若選中的4人中,不贊成“延遲退休”的人數為,求隨機變量
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學在平昌冬奧會開幕后的第二天,從全校學生中隨機抽取了120名學生,對是否收看平昌冬奧會開幕式情況進行了問卷調查,統計數據如下:
收看 | 沒收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根據上表說明,能否有的把握認為,收看開幕式與性別有關?
(Ⅱ)現從參與問卷調查且收看了開幕式的學生中,采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.
(ⅰ)問男、女學生各選取多少人?
(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.
附:,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于,若數列
滿足
,則稱這個數列為“K數列”.
(Ⅰ)已知數列:1,m+1,m2是“K數列”,求實數的取值范圍;
(Ⅱ)是否存在首項為-1的等差數列為“K數列”,且其前n項和
滿足
?若存在,求出
的通項公式;若不存在,請說明理由;
(Ⅲ)已知各項均為正整數的等比數列是“K數列”,數列
不是“K數列”,若
,試判斷數列
是否為“K數列”,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠家具車間造、
型兩類桌子,每張桌子需木工和漆工梁道工序完成.已知木工做一張
、
型型桌子分別需要1小時和2小時,漆工油漆一張
、
型型桌子分別需要3小時和1小時;又知木工、漆工每天工作分別不得超過8小時和9小時,而工廠造一張
、
型型桌子分別獲利潤2千元和3千元.
(1)列出滿足生產條件的數學關系式,并畫出可行域;
(2)怎樣分配生產任務才能使每天的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的一個焦點坐標為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點,過點
的直線
(與
軸不重合)與橢圓
交于
兩點,直線
與直線
相交于點
,試證明:直線
與
軸平行.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》中,將底面為長方形且有一條側棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬中,側棱
底面
,且
,過棱
的中點
,作
交
于點
,連接
(Ⅰ)證明:.試判斷四面體
是否為鱉臑,若是,寫出其每個面的直角(只需寫
出結論);若不是,說明理由;
(Ⅱ)若面與面
所成二面角的大小為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com