【題目】社會在對全日制高中的教學水平進行評價時,常常將被清華北大錄取的學生人數作為衡量的標準之一.重慶市教委調研了某中學近五年(2013年-2017年)高考被清華北大錄取的學生人數,制作了如下所示的表格(設2013年為第一年).
年份(第 | |||||
人數( |
(1)試求人數關于年份
的回歸直線方程
;
(2)在滿足(1)的前提之下,估計2018年該中學被清華北大錄取的人數(精確到個位);
(3)教委準備在這五年的數據中任意選取兩年作進一步研究,求被選取的兩年恰好不相鄰的概率.
參考公式:.
科目:高中數學 來源: 題型:
【題目】設集合為下述條件的函數
的集合:①定義域為
;②對任意實數
,都有
.
(1)判斷函數是否為
中元素,并說明理由;
(2)若函數是奇函數,證明:
;
(3)設和
都是
中的元素,求證:
也是
中的元素,并舉例說明,
不一定是
中的元素.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)= sin
,若存在f(x)的極值點x0滿足x02+[f(x0)]2<m2 , 則m的取值范圍是( )
A.(﹣∞,﹣6)∪(6,+∞)
B.(﹣∞,﹣4)∪(4,+∞)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}為等比數列,a4+a7=2,a5a6=-8,則a1+a10=( )
A. 7 B. 5
C. -5 D. -7
【答案】D
【解析】由解得
或
∴或
,∴a1+a10=a1(1+q9)=-7.選D.
點睛:在解決等差、等比數列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數列的性質,性質是兩種數列基本規律的深刻體現,是解決等差、等比數列問題既快捷又方便的工具,應有意識地去應用.但在應用性質時要注意性質的前提條件,有時需要進行適當變形. 在解決等差、等比數列的運算問題時,經常采用“巧用性質、整體考慮、減少運算量”的方法.
【題型】單選題
【結束】
8
【題目】在數列{ }中,已知
,
,
,則
等于( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com