【題目】已知{an}為等比數列,a4+a7=2,a5a6=-8,則a1+a10=( )
A. 7 B. 5
C. -5 D. -7
【答案】D
【解析】由解得
或
∴或
,∴a1+a10=a1(1+q9)=-7.選D.
點睛:在解決等差、等比數列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數列的性質,性質是兩種數列基本規律的深刻體現,是解決等差、等比數列問題既快捷又方便的工具,應有意識地去應用.但在應用性質時要注意性質的前提條件,有時需要進行適當變形. 在解決等差、等比數列的運算問題時,經常采用“巧用性質、整體考慮、減少運算量”的方法.
【題型】單選題
【結束】
8
【題目】在數列{ }中,已知
,
,
,則
等于( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】社會在對全日制高中的教學水平進行評價時,常常將被清華北大錄取的學生人數作為衡量的標準之一.重慶市教委調研了某中學近五年(2013年-2017年)高考被清華北大錄取的學生人數,制作了如下所示的表格(設2013年為第一年).
年份(第 | |||||
人數( |
(1)試求人數關于年份
的回歸直線方程
;
(2)在滿足(1)的前提之下,估計2018年該中學被清華北大錄取的人數(精確到個位);
(3)教委準備在這五年的數據中任意選取兩年作進一步研究,求被選取的兩年恰好不相鄰的概率.
參考公式:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某廠生產某種產品的年固定成本為250萬元,每生產x千件,需另投入成本C(x)(萬
元),若年產量不足80千件,C(x)的圖象是如圖的拋物線,此時C(x)<0的解集為(﹣30,0),且C(x)的最小值是﹣75,若年產量不小于80千件,C(x)=51x+ ﹣1450,每千件商品售價為50萬元,通過市場分析,該廠生產的商品能全部售完;
(1)寫出年利潤L(x)(萬元)關于年產量x(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(ωx+φ)(ω>0,0<φ<π)的周期為π,圖象的一個對稱中心為( ,0),將函數f(x)圖象上的所有點的橫坐標伸長為原來的2倍(縱坐標不變),再將所得圖象向右平移0.5π個單位長度后得到函數g(x)的圖象;
(1)求函數f(x)與g(x)的解析式;
(2)當a≥1,求實數a與正整數n,使F(x)=f(x)+ag(x)在(0,nπ)恰有2019個零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數y=f (x)的定義域為D,如果存在非零常數T,對于任意 x∈D,都有f(x+T)=Tf (x),則稱函數y=f(x)是“似周期函數”,非零常數T為函數y=f( x)的“似周期”.現有下面四個關于“似周期函數”的命題:
①如果“似周期函數”y=f(x)的“似周期”為﹣1,那么它是周期為2的周期函數;
②函數f(x)=x是“似周期函數”;
③函數f(x)=2x是“似周期函數”;
④如果函數f(x)=cosωx是“似周期函數”,那么“ω=kπ,k∈Z”.
其中是真命題的序號是 . (寫出所有滿足條件的命題序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設等差數列{an}的前n項和為Sn,若Sm-1=-2,Sm=0,Sm+1=3,則m=( )
A. 5 B. 4 C. 3 D. 6
【答案】A
【解析】
根據數列前n項和的定義得到的值,再由數列的前n項和的公式得到
,進而求得首項,由
=2,解得m值.
Sm-1=-2,Sm=0,故得到 Sm=0,Sm+1=3,則
,
根據等差數列的前n項和公式得到Sm=,得到首項為-2,故
=2,解得m=5.
故答案為:A.
【點睛】
這個題目考查的是數列通項公式的求法及數列求和的常用方法;數列通項的求法中有常見的已知和
的關系,求
表達式,一般是寫出
做差得通項,但是這種方法需要檢驗n=1時通項公式是否適用;數列求和常用法有:錯位相減,裂項求和,分組求和等。
【題型】單選題
【結束】
11
【題目】已知等比數列{an}的各項均為不等于1的正數,數列{bn}滿足bn=lgan,b3=18,b6=12,則數列{bn}的前n項和的最大值等于( )
A. 126 B. 130 C. 132 D. 134
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中位數為1010的一組數構成等差數列,其末項為 2015,則該數列的首項為__________.
【答案】5.
【解析】
設數列的首項為,則
,所以
,故該數列的首項為
,所以答案應填:
.
【考點定位】等差中項.
【題型】填空題
【結束】
15
【題目】對于不等式,則對區間
上的任意x都成立的實數t的取值范圍是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C1的方程為,雙曲線C2的左、右焦點分別是C1的左、右頂點,而C2的左、右頂點分別是C1的左、右焦點,O為坐標原點.
(1)求雙曲線C2的方程;
(2)若直線l:y=kx+與雙曲線C2恒有兩個不同的交點A和B,且
,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,A,B,C所對的邊分別為a,b,c,已知sinC= .
(1)若a+b=5,求△ABC面積的最大值;
(2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com